• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

teorema di compattezza

di Silvio Bozzi - Enciclopedia della Scienza e della Tecnica (2008)
  • Condividi

teorema di compattezza

Silvio Bozzi

Nella logica matematica, è tale un qualsiasi teorema che stabilisce che – fissato un linguaggio formale L – una teoria T ha come conseguenza logica la formula A, cioè T⊩A, se e solo se esiste una parte T′di T per cui T′⊩A. Equivalentemente, una teoria T ha un modello se ne ha uno ogni sua parte finita. Il teorema vale per i linguaggi elementari di qualunque cardinalità dei linguaggi elementari ma non vale in generale nelle forme sopra mensionate per linguaggi più espressivi come quelli del secondo ordine, i linguaggi infinitari Lk,l con congiunzioni e disgiunzioni infinite ecc. Valgono invece forme modificate come, per es., il teorema di compattezza di Barwise (1968) per frammenti di linguaggi con congiunzioni numerabili dove si generalizzi il concetto di finito a quello di elemento di un insieme ammissibile. Come provato da Jerome Keisler e Alfred Tarski, la validità della compattezza per linguaggi infinitari è legata all’esistenza di ultrafiltri con particolari proprietà di completezza. Di qui la possibilità di usare questi linguaggi per classificare i grandi cardinali e viceversa. Va notato infine che lo studio della validità o meno di forme del teorema di compattezza si estende a linguaggi e logiche non classiche.

→ Modelli, teoria dei

Vedi anche
lògica matemàtica lògica matemàtica Branca della logica, che utilizza un linguaggio simbolico e adotta un sistema di calcolo di tipo algebrico per esaminare le espressioni di un discorso deduttivo. Queste ultime possono essere considerate formalmente come oggetti grafici combinabili tra loro (sintassi) o in relazione ... insieme fisica Nella meccanica statistica classica con insieme statistico, o con il termine ensemble, introdotto da J.W. Gibbs, si indicano famiglie di stati di equilibrio macroscopico. Nello spazio delle fasi, cioè nello spazio delle coordinate pi, (i=1, 2, 3) e delle quantità di moto qi (i=1, 2, 3) di ciascuna ... modello In arte e architettura, persona od oggetto che l’artista ritrae o riproduce, oppure esemplare preparatorio dell’opera finale. Nel linguaggio scientifico, costruzione schematica, puramente ipotetica o realizzata materialmente, di origine anche intuitiva, con cui viene rappresentato globalmente o soltanto ... bicondizionale In logica matematica, la connessione p ↔ q di due enunciati p e q, che è vera se e solo se essi sono entrambi veri o entrambi falsi.
Categorie
  • LOGICA in Filosofia
Tag
  • LINGUAGGIO FORMALE
  • LOGICA MATEMATICA
  • ALFRED TARSKI
  • SE E SOLO SE
  • CARDINALITÀ
Altri risultati per teorema di compattezza
  • compattezza, teorema di
    Enciclopedia della Matematica (2013)
    compattezza, teorema di → compattezza logica.
Vocabolario
compattézza
compattezza compattézza s. f. [der. di compatto]. – 1. L’esser compatto, coesione: c. del legno, di un terreno, di un tessuto; fig.: la c. dei reparti combattenti, di un partito politico; c. di un racconto, di una trama narrativa. 2. In...
teorèma
teorema teorèma s. m. [dal lat. tardo theorēma, gr. ϑεώρημα (propr. «ricerca, meditazione», der. di ϑεω-ρέω «esaminare, osservare»)] (pl. -i). – 1. Nella cultura classica e medievale, la «visione» sensibile o intellettiva e il relativo...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali