• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

varieta abeliana

Enciclopedia della Matematica (2013)
  • Condividi

varieta abeliana


varietà abeliana in geometria algebrica, → gruppo algebrico la cui sottostante varietà algebrica è proiettiva e connessa; le varietà abeliane generalizzano a dimensioni superiori il concetto di → curva ellittica (che infatti è una varietà abeliana di dimensione 1). L’aggettivo «abeliano» si riferisce al fatto che il gruppo, in questo caso, è necessariamente commutativo. Le varietà abeliane possono essere definite su qualunque campo, ma storicamente le prime a essere studiate furono quelle definite sul campo C dei numeri complessi; una tale varietà abeliana coincide con un → toro complesso che può essere immerso in uno spazio proiettivo complesso. Le varietà abeliane definite su campi che siano estensioni di Q giocano anche un ruolo centrale in teoria dei numeri e in particolare nello studio delle equazioni diofantee; un importante risultato in tale settore è il teorema di Mordell-Weil (→ Mordell, teorema di) secondo cui il gruppo dei punti razionali di una varietà abeliana definita su una estensione finita del campo Q dei numeri razionali è finitamente generato.

Vedi anche
campo Biologia C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine ad arti posteriori, quelli branchiali a branchie ecc. La realizzazione delle capacità di cui è dotato ... numeri complessi Si chiama c. ogni numero della forma a + i b, essendo a e b due numeri reali relativi (positivi, negativi o anche nulli) e rappresentando il simbolo i (unità immaginaria o immaginario) la radice quadrata di −1; l’addendo a si chiama la parte reale, l’addendo i b la parte immaginaria, b il coefficiente ... modulo Architettura Misura convenzionale che stabilisce il rapporto fra le varie parti di un edificio e una unità base di misura. Nell’architettura dell’età classica greca e romana l’unità base della composizione architettonica solitamente è il diametro della colonna nella sua parte più bassa (imoscapo); da ... polinomio In matematica, somma di monomi (in senso proprio, solo con riferimento a monomi interi), detti termini del p.: binomio, trinomio, quadrinomio ecc., è un polinomio rispettivamente di 2, 3, 4 ecc. termini; coefficienti di un p. sono i coefficienti dei suoi monomi; grado di un p. rispetto a una lettera ...
Tag
  • GEOMETRIA ALGEBRICA
  • EQUAZIONI DIOFANTEE
  • TEORIA DEI NUMERI
  • SPAZIO PROIETTIVO
  • VARIETÀ ALGEBRICA
Altri risultati per varieta abeliana
  • non abeliano
    Dizionario delle Scienze Fisiche (1996)
    nón abeliano [locuz. agg.] [ALG] Campo n.: lo stesso che campo non commutativo. ◆ Gruppo n.: (a) [ALG] gruppo in cui la legge di composizione non è commutativa; (b) [MCQ] nella teoria dei campi quantistici la locuz. s'intende spesso relativa al gruppo d'invarianza di gauge della teoria; operatori hermitiani ...
  • ABELIANO
    Enciclopedia Italiana (1929)
    Portano questo nome diversi enti matematici. In primo luogo i gruppi di sostituzioni permutabili, cui si legano equazioni algebriche (abeliane) risolubili per radicali (v. gruppi, equazioni algebriche). In secondo luogo gli integrali di differenziale algebrico, cioè del tipo /Φ(xy) dx, dove Φ designa ...
Vocabolario
varietà¹
varieta1 varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono,...
varietà²
varieta2 varietà2 s. m. [adattam. del fr. variété, propriam. s. f. corrispondente all’ital. varietà1, divenuto masch. (non però in francese) per ellissi da Théâtre des Variétés «teatro di spettacoli varî» (usato come nome proprio)]. – Spettacolo...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali