• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Desargues, teorema di

Enciclopedia della Matematica (2013)
  • Condividi

Desargues, teorema di


Desargues, teorema di o teorema dei triangoli omologici, in geometria proiettiva, stabilisce che se due triangoli ABC e A′B′C′ senza vertici in comune sono tali che le coppie di vertici omologhi sono tutte allineate con uno stesso punto O (proprio o improprio), allora le coppie di rette AB e A′B′, BC e B′C′, AC e A′C′ si intersecano in tre punti allineati, e viceversa. In altri termini, esso stabilisce che due triangoli sono in prospettiva rispetto a un punto se e solo se sono in prospettiva anche rispetto a una retta.

Il teorema di Desargues è autoduale, cioè coincide con il suo duale, ottenuto scambiando tra loro i termini retta e punto (→ dualità). Il teorema, pur non riguardando questioni metriche, è ricavabile per via algebrica nel piano euclideo, una volta definito un sistema di riferimento cartesiano, ma non è deducibile dagli assiomi di piano affine. Si possono pertanto costruire geometrie in cui esso non è valido (geometrie non desarguesiane) e geometrie nelle quali si assume esso o un suo equivalente come ulteriore assioma (geometrie desarguesiane).

☐ Un secondo teorema di Desargues stabilisce che le coniche di un fascio (comprese le tre degeneri, costituenti un quadrangolo completo) tagliano sopra una retta non passante per i punti base del quadrangolo (i vertici) coppie di punti di una involuzione.

Sempre come teorema di Desargues è riportato in letteratura il teorema del quadrangolo completo, in realtà già presente nelle Collectiones mathematicae di Pappo: tagliando le tre coppie di lati opposti di un quadrangolo completo con una retta non passante per alcuno dei vertici si ottengono tre coppie di punti coniugati in una stessa involuzione.

TEOREMA DI DESARGUES

Vedi anche
algebra Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. Con significato specifico è sinonimo di sistema ipercomplesso. La parola al-giabr è usata per la ... postulato Linguistica Forme o parole postulate Quelle forme o parole antiche, di solito contrassegnate con asterisco, che non sono documentate in alcun testo, ma di cui viene ragionevolmente supposta l’esistenza come etimi di parole moderne (per es., il lat. *rocca che, pur non ricorrendo in alcun testo latino, ...
Tag
  • SISTEMA DI RIFERIMENTO CARTESIANO
  • TEOREMA DEI TRIANGOLI OMOLOGICI
  • GEOMETRIA PROIETTIVA
  • PIANO EUCLIDEO
  • PIANO AFFINE
Vocabolario
teorèma
teorema teorèma s. m. [dal lat. tardo theorēma, gr. ϑεώρημα (propr. «ricerca, meditazione», der. di ϑεω-ρέω «esaminare, osservare»)] (pl. -i). – 1. Nella cultura classica e medievale, la «visione» sensibile o intellettiva e il relativo...
Disforia di genere
disforia di genere loc. s.le f. Condizione di intensa e persistente sofferenza causata dal sentire la propria identità di genere diversa dal proprio sesso anatomico. ♦ «Come ha appena detto la compagna transgender...». I delegati di fabbrica...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali