Bolzano-Weierstrass, teorema di
Bolzano-Weierstrass, teorema di in analisi, stabilisce che ogni sottoinsieme infinito e limitato di Rn ammette almeno un punto di accumulazione in Rn. Questo teorema non vale per spazi infinito-dimensionali: per esempio, in uno spazio di Hilbert vi sono infiniti versori ortogonali e poiché la distanza di due qualsiasi tra essi è √(2) nessuna sottosuccessione è una successione di Cauchy. Il teorema può essere anche formulato affermando che ogni successione limitata di numeri reali ha una sottosuccessione convergente.