laplacianolaplaciano 〈laplasiano, ma pronunciato anche all'it.〉 [s.m. Der. dal cognome di P.-S. de Laplace] [ANM] L. od operatore di Laplace: è detto anche parametro differenziale secondo, o nabla quadrato, [...] di una funzione e ha simb. Δ (il più diffuso nel passato) oppure ∇2 (il più diffuso attualmente nella fisica, intendendosi con il l. il prodotto scalare dell'ope-ratore vettoriale nabla per sé stesso): ...
Leggi Tutto
Poisson, equazione di
Poisson, equazione di equazione differenziale alle derivate parziali Δu = ƒ, dove Δ è l’operatore laplaciano; rappresenta il caso non omogeneo della equazione di → Laplace. Il termine [...] noto ƒ può rappresentare masse (cariche) distribuite in un dominio Ω che generano il campo di potenziale u. Se tali masse sono finite, una soluzione dell’equazione, valida in tutto R3, è data dall’integrale
detto ...
Leggi Tutto
Operatore vettoriale, di simbolo ∇, avente componenti
,
mediante il quale, nell’analisi vettoriale, si esprimono facilmente il gradiente, la divergenza, il rotore e il laplaciano. Precisamente, il gradiente [...] f, e così la divergenza e il rotore della funzione vettoriale v sono espressi rispettivamente dal prodotto scalare e dal prodotto vettoriale di ∇ per v; il prodotto scalare di ∇ per sé stesso dà infine l’operatore laplaciano (che si indica con ∇2). ...
Leggi Tutto
funzione superarmonica
funzione superarmonica in un insieme Ω ⊆ Rn, funzione u che soddisfa la disuguaglianza −∆u ≥ 0, dove ∆ è l’operatore di Laplace (→ laplaciano). Se la funzione u è superarmonica, [...] la funzione −u è subarmonica ...
Leggi Tutto
funzione subarmonica
funzione subarmonica in un insieme Ω ⊆ Rn, funzione u che soddisfa la disuguaglianza −∆u ≤ 0 dove ∆ è l’operatore di Laplace (→ laplaciano). Il nome deriva dal fatto che se u è subarmonica [...] e ν è armonica in Ω, e le due funzioni assumono lo stesso valore sul bordo ∂Ω di Ω, allora u ≤ v in Ω. Questo risultato è conseguenza di un teorema (principio del massimo) secondo cui una funzione u, subarmonica ...
Leggi Tutto
Laplace, equazione di
Laplace, equazione di equazione differenziale alle derivate parziali di secondo ordine data da Δu = 0, dove Δ è l’operatore di Laplace o → laplaciano. Questa equazione descrive [...] elettrico o gravitazionale in zone di spazio dove non siano presenti cariche (o masse), ed è il prototipo delle equazioni differenziali alle derivate parziali di tipo ellittico. Le soluzioni dell’equazione di Laplace si chiamano → funzioni armoniche. ...
Leggi Tutto
dalembertiano
dalembertiano 〈dalàm-〉 (o dalambertiano) [agg. Der. del cognome di J.-B. Le Rond detto d'Alembert] [ANM] L'operatore ∇2-v-2(ð2/ðt2), essendo ∇2 l'operatore laplaciano, v una costante e [...] t il tempo; è indicato con il simb. □; relativ. a una grandezza a in un riferimento cartesiano è □a=(ð2a/ðx2)+(ð2a/ðy2)+(ð2a/ðz2)-v-2(ð2a/ðt2)e il suo annullarsi significa che a si propaga per onde persistenti, ...
Leggi Tutto
operatore dalembertiano
operatore dalembertiano o operatore di d’Alembert, indicato con ☐ (un quadratino vuoto), sintetizza, in analisi, l’espressione
cioè la differenza tra la derivata seconda rispetto [...] a t e il → laplaciano. Poiché quest’ultimo è spesso indicato con Δ, si ha:
Con l’operatore dalembertiano, l’equazione delle onde può essere così riscritta:
(→ Alembert (d’), equazione di). ...
Leggi Tutto
laplaciano
agg. – Che si riferisce all’astronomo e matematico fr. P.-S. de Laplace ‹laplàs› (1749-1827). Ipotesi cosmogonica l. (o di Laplace), ipotesi per la quale si suppone che il Sole fosse originariamente un immenso globo gassoso, o nebula,...
evoluzione
evoluzióne s. f. [dal lat. evolutio -onis, der. di evolvĕre, propr. «svolgere (il rotolo di papiro per leggere)»]. – 1. Nel sign. proprio, svolgimento, sviluppo, spiegamento; quindi, movimento ordinato a un fine: i due compagni...