• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
115 risultati
Tutti i risultati [115]
Matematica [72]
Storia della matematica [31]
Algebra [25]
Analisi matematica [14]
Fisica [11]
Geometria [11]
Fisica matematica [8]
Temi generali [7]
Astronomia [7]
Biografie [7]

numero

Enciclopedia on line

Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] ). Dato un corpo F=Q(α), l’insieme di tutti gli interi algebrici di F costituisce un anello indicato con OF. Per es., l’anello degli interi del corpo quadratico Q(√‾‾‾‾−1) è quello degli interi di Gauss. In OF si possono avere più unità e la ... Leggi Tutto
CATEGORIA: CRITICA RETORICA E STILISTICA – FILOSOFIA DEL LINGUAGGIO – GRAMMATICA – ALGEBRA – ARITMETICA – CONTABILITA – DOTTRINE TEORIE E CONCETTI – DOTTRINE TEORIE CONCETTI
TAGS: FUNZIONI DI VARIABILE COMPLESSA – SISTEMI DI EQUAZIONI, LINEARI – FUNZIONI DI VARIABILE REALE – RELAZIONE DI EQUIVALENZA – FUNZIONE ZETA DI RIEMANN
Mostra altri risultati Nascondi altri risultati su numero (6)
Mostra Tutti

ALGEBRA

Enciclopedia Italiana - II Appendice (1948)

Algebra moderna. - L'"algebra moderna", che meglio si potrebbe chiamare "algebra astratta" o "algebra generale", si è sviluppata soprattutto negli ultimi venticinque anni dal connubio dell'algebra classica [...] in un anello commutativo". Tale teoria (sgorgata storicamente dallo studio degli ideali nell'anello costituito dagli interi algebrici in un corpo algebrico di grado finito, nonché dalle ricerche sugli ideali di polinomî) è stata portata sul terreno ... Leggi Tutto
TAGS: SCOMPOSIZIONE IN FATTORI PRIMI – LIMITE DI UNA SUCCESSIONE – CORRISPONDENZA BIUNIVOCA – CORPO NON COMMUTATIVO – PROPRIETÀ COMMUTATIVA
Mostra altri risultati Nascondi altri risultati su ALGEBRA (9)
Mostra Tutti

ARITMETICA

Enciclopedia Italiana - II Appendice (1948)

Negli ultimi decennî l'aritmetica superiore o teoria dei numeri è stata intensamente coltivata, in ispecie in Germania, nei paesi anglosassoni ed in Russia. Nella impossibilità di esaurire in ogni particolare [...] circa la trascendenza o meno del numero αβ, essendo α e β algebrici (con α =⃓ 0, α =⃓ 1 e β irrazionale), è stato del tipo N = nk1 + nk2 + ... + nks si tmtta di stabilire che esiste un minimo intero s = g (k) tale che W (N; k; g (k)) ≥ 1. Ciò era ... Leggi Tutto
TAGS: DISTRIBUZIONE DEI NUMERI PRIMI – PROGRESSIONE ARITMETICA – SCUOLA NORMALE DI PISA – NUMERI TRASCENDENTI – TEORIA DEI RETICOLI
Mostra altri risultati Nascondi altri risultati su ARITMETICA (7)
Mostra Tutti

NUMERI, Teoria dei

Enciclopedia Italiana - IV Appendice (1979)

NUMERI, Teoria dei Enrico Bombieri Gli sviluppi recenti della t. dei n. (v. aritmetica: Aritmetica inferiore o teoria dei numeri, IV, p. 370) hanno condotto alla soluzione di problemi fondamentali e [...] anni Baker è riuscito, con l'introduzione di misure di approssimazione dei logaritmi di numeri algebrici, a determinare algoritmi effettivi per trovare tutte le soluzioni intere di un'equazione f(x,y) = 0 di genere1, e per vaste classi di equazioni ... Leggi Tutto
TAGS: ULTIMO TEOREMA DI FERMAT – NUMERO TRASCENDENTE – GEOMETRIA ALGEBRICA – POLINOMIO OMOGENEO – LOGICA MATEMATICA
Mostra altri risultati Nascondi altri risultati su NUMERI, Teoria dei (4)
Mostra Tutti

Fermat, ultimo teorema di

Enciclopedia del Novecento (2004)

Fermat, ultimo teorema di MMassimo Bertolini di Massimo Bertolini SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] j(z). Più precisamente, visto K come sottocampo di C, si consideri una base {1,ω} su Z dell'anello ℴK degli interi algebrici di K, con ω appartenente a ℋ (per definizione, ℴK è il sottoanello di K contenente gli elementi che soddisfano un'equazione ... Leggi Tutto
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – RELAZIONE DI EQUIVALENZA – POLINOMIO IRRIDUCIBILE – ALEXANDER GROTHENDIECK – ADRIEN MARIE LEGENDRE
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

Gruppi

Enciclopedia del Novecento (1978)

Gruppi GGeorge W. Mackey di George W. Mackey SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] e x2 generano lo stesso ideale principale se, e soltanto se, x1 = wx2, ove w e un unità. Se ℛ è l'anello di tutti gli interi algebrici in un Q(ϑ) e se ϑ è tale che ℛ ammetta una legge di fattorizzazione unica, ogni ideale è principale e la legge di ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI NECESSARIE E SUFFICIENTI – TEOREMA FONDAMENTALE DELL'ALGEBRA – PRINCIPIO DI ESCLUSIONE DI PAULI – LEGGE DI RECIPROCITÀ QUADRATICA

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] dove P0 (t) = 1 - t, P2n (t) = 1 - qnt, e, per ogni i = 1, ..., 2n - 1, Pi ha coefficienti interi e si può scrivere come dove i numeri αij sono interi algebrici tali che ∣αij∣ = qi−2%. 4) Numeri di Betti: detto bi (X) il grado di Pi (t), allora x ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] F è un anello. In altre parole, la somma, la differenza e il prodotto di interi algebrici di F appartengono ancora a F. Questo anello è chiamato l'‛anello degli interi algebrici' di F ed è indicato con ℴF. L'aritmetica dell'anello ℴF è il principale ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] polinomi in più variabili; egli, tra l'altro, considerava anche il caso in cui i coefficienti numerici fossero interi algebrici arbitrari. Il suo lavoro definitivo sull'argomento furono i Grundzüge (1882), pubblicati come parte delle celebrazioni del ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] , il numero delle classi di ideali di Dedekind è finito. È rispetto agli ideali, non rispetto agli interi algebrici, che Dedekind sviluppò la propria aritmetica. Fornendo le definizioni di ideale primo e di moltiplicazione fra ideali, dimostrò ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 12
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
problèma
problema problèma s. m. [dal lat. problema -ătis «questione proposta», gr. πρόβλημα -ατος, der. di προβάλλω «mettere avanti, proporre»] (pl. -i). – 1. Ogni quesito di cui si richieda ad altri o a sé stessi la soluzione, partendo di solito...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali