• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Stieltjes Thomas Johannes

Dizionario delle Scienze Fisiche (1996)
  • Condividi

Stieltjes Thomas Johannes


Stieltjes 〈stìiltiës〉 Thomas Johannes (Zwolle 1856 - Tolosa 1894) Astronomo dell'Osservatorio di Leida (1877), prof. nell'univ. di Groninga (1883) e di Tolosa (1886). ◆ [ANM] Integrale di S.: generalizzazione dell'integrale definito, ottenuta sostituendo alla variabile d'integrazione un'opportuna funzione. Date in un intervallo (a, b) due funzioni reali, delle quali una, g(x), continua, l'altra, F(x), a variazione limitata, l'integrale di S. è ∫ba g(x) dF(x)=limΣ ii==n₁ g(ξi)[F(xi)-F(xi-1)], ove x₀=a, x₁, ..., xn-1, xn=b è una divisione di (a, b) in intervalli parziali, ξi è un punto scelto nell'intervallo (xi-1, xi), e il limite è eseguito facendo tendere a zero la massima ampiezza degli intervalli. L'integrale di S. si presenta in varie importanti questioni, per es. per esprimere il potenziale dei campi di forza coulombiani.

Vedi anche
integrale In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per la prima volta in uno scritto di G. Bernoulli (1690); le denominazioni di integrale definito e integrale ... applicazione matematica Il concetto di applicazione è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di applicazione di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento ...
Categorie
  • ANALISI MATEMATICA in Matematica
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali