spazio normato
Uno spazio lineare X su cui sia definita una funzione a valori reali, ∥∙∥, detta norma, con le seguenti proprietà: (a) ∥x∥≥0 e ∥x∥=0 se e solo se x=0; (b) per ogni reale α, si ha che ∥αx∥=∣α∣∥x∥; (c) ∥x+y∥≤∥x∥+∥y∥. La proprietà (c) viene detta disuguaglianza triangolare. Si noti che la proprietà (b) implica la simmetria della norma, cioè che ∥x∥=∥−x∥. La norma su uno spazio lineare ha le stesse proprietà del valore assoluto di un numero sui numeri reali.