sorite
Dal lat. sorites, gr. σωρείτης o σωρίτης, der. di σωρός «mucchio, cumulo». Termine usato da Diogene Laerzio per indicare una delle argomentazioni sofistiche (nota anche come sofisma del mucchio o dell’acervo) da lui attribuite a Eubulide di Mileto (e da Aristotele invece, sia pure in altra forma, a Zenone), che fu poi largamente usata dagli scettici greci per dimostrare l’impossibilità di distinguere il vero dal falso. Il modo più comune con cui essa era formulata era il seguente: il primo granello non costituisce mucchio, il secondo neppure, ecc.; o il mucchio non si costituisce mai o, se si ammette che si costituisce per l’aggiunta di un dato granello, si deve concludere che è stato quel solo granello a «far essere» il mucchio. Nell’accezione etimologica («mucchio», «cumulo»), il termine s. (propr. soriticus syllogismus) fu poi ripreso da Mario Vittorino (4° sec.) per indicare una forma di sillogismo composto non di due ma di più premesse (costituendo così, di fatto, un «cumulo» di sillogismi che elimina tutte le conclusioni e le premesse minori), disposte in modo che il predicato della prima premessa è assunto come soggetto della seconda, e così via fino alla conclusione, in cui il soggetto della prima premessa si unisce al predicato dell’ultima (A è B, B è C, C è D, quindi A è D: s. regressivo o, impropriamente, aristotelico). A R. Goclenio (16° sec.) si deve una forma inversa di s. (s. progressivo o goclenico), in cui il soggetto della prima premessa è assunto come predicato della seconda, e così via fino alla conclusione, in cui il soggetto dell’ultima premessa si unisce al predicato della prima (C è D, B è C, A è B, quindi A è D).