• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

simmetria assiale, invarianti di una

Enciclopedia della Matematica (2013)
  • Condividi

simmetria assiale, invarianti di una


simmetria assiale, invarianti di una in geometria, proprietà di una figura o di una configurazione geometrica che si mantengono in una → simmetria assiale. Nella geometria del piano essi sono: l’allineamento di tre punti di una retta, il parallelismo tra rette, le lunghezze dei segmenti e le ampiezze degli angoli. Nello spazio, si mantiene anche la complanarità di quattro punti di un piano e il parallelismo tra piani.

Vedi anche
determinante Biologia Termine introdotto da A. Weismann per indicare presunti aggregati di molecole contenuti nel nucleo delle cellule sessuali e che conterrebbero i fattori per la determinazione delle cellule. In immunologia, d. antigenico, sito dell’antigene contro cui è diretta la specificità di un anticorpo; ... gruppo simplettico In matematica, il gruppo costituito dalle matrici s. di ordine 2n (simbolo Sp2n). Una matrice A di ordine 2n si chiama s. se risulta A*J=JA–1, ove J è la matrice di ordine 2n formata da n blocchi (01 –10) situati lungo la diagonale principale e A*, A–1 sono rispettivamente le matrici trasposta e inversa ... simmetria Distribuzione ordinata delle parti di un oggetto tale che si possa individuare un elemento geometrico (un punto, una linea, una superficie) rispetto al quale a ogni punto dell’oggetto posto da una parte di esso corrisponda, a uguale distanza, un punto dall’altra parte. Con significato più generico, disposizione ... matrice Anatomia Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto. M. dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia e della lunula, e alla cui opacità è dovuto il colorito biancastro di quest’ultima. M. del ...
Tag
  • COMPLANARITÀ
  • GEOMETRIA
Vocabolario
simmetrìa
simmetria simmetrìa s. f. [dal gr. συμμετρία, comp. di σύν «con» e μέτρον «misura»]. – 1. Ordinata distribuzione delle parti di un oggetto (di un edificio, di una struttura, di un’opera d’arte, ecc.) tale che si possa individuare un elemento...
assiale
assiale agg. [der. di asse3]. – Che è in direzione dell’asse, disposto secondo l’asse: piano a., che passa per l’asse; spinta a.; cuscinetti a., cioè particolarmente atti a sopportare carichi secondo l’asse; ventilatori, compressori a.,...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali