La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie
Jean Mawhin
Equazioni differenziali ordinarie
Accanto a sostanziali progressi nella teoria delle equazioni [...] gli altri hanno la parte reale strettamente negativa. È l'origine del metodo delle varietà centrali, che riduce lo studio del comportamento asintotico di un sistema differenziale a quello di un sistema di dimensione minore (uno o due in questo caso ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni
Craig Fraser
Mario Miranda
Calcolo delle variazioni
Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] la curva che unisce A e B, cioè la soluzione dell'equazione differenziale di Euler per il problema. Se nell'intervallo [t0,t1] non Enrico Giusti nel 1969. è il cono:
il cui bordo è una varietà compatta analitica contenuta nella sfera unitaria di ℝ8. ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico
Paolo Freguglia
Gert Schubring
Il calcolo geometrico
Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] per esempio, con gli sviluppi della teoria delle varietà che si riallacciava a Riemann. Ecco perché Felix calcolo vettoriale e tensoriale divenne strumento irrinunciabile della geometria differenziale, e i lavori di Wilhelm Blaschke (1885-1962 ...
Leggi Tutto
meccanica
meccànica [Der. del lat. mechanica, dal gr. mechaniké (téchne) "(arte) delle macchine"] [MCC] Nella suddivisione tradizionale della fisica, la scienza che studia le leggi del moto dei corpi, [...] delle configurazioni può assumere la struttura delle varietà differenziabili: v. meccanica analitica. ◆ [MCC della ẋ): ẍ+εf(x)ẋ+x=F cos(Ωt+α); è questa l'equazione differenziale di Liénard, non lineare per la presenza del termine f(x)ẋ, con F=0 ...
Leggi Tutto
BIANCHI, Luigi
Enzo Pozzato
Figlio del giurista Saverio, nacque a Parma il 18 genn. 1856. Entrato alla Scuola normale superiore di Pisa il 14 nov. 1873, si laureò in matematica il 30 nov. 1877. Fu abilitato [...] 1886.
Le ricerche del B. furono rivolte alla geometria differenziale, alla teoria dei numeri e all'analisi pura. A lui XL), s. 3, XI (1898), pp. 267-352; Sulle varietà a tre dimensioni deformabili entro lo spazio euclideo a quattro dimensioni,ibid., ...
Leggi Tutto
CONFORTO, Fabio
Francesco Saverio Rossi
Nato a Trieste nel 1909 da Ruggero e Irene Vascotto, quando la città era ancora parte integrante dell'Impero austro-ungarico, visse gli anni dell'infanzia, a [...] e nat., s. 6, XII [1930], pp. 547-52 e Sopra il calcolo differenziale assoluto negli spazi funzionali, in Annali d. Scuola norm. sup. di Pisa, s. del C. Sopra le trasformazioni in sé delle varietà di Jacobi relative a una curva di genere effettivo ...
Leggi Tutto
BOMPIANI, Enrico
Giorgio Israel
Nacque il 12 febbr. 1889 a Roma da Arturo e da Domenica Gaifani. Abbandonando la tradizione di studi in medicina della famiglia (il padre e due fratelli erano illustri [...] [1911], pp. 33-39) - il B. si dedicò allo studio delle proprietà proiettivo-differenziali di una superficie. Introdusse la nozione di spazio osculatore ad una varietà studiandone il coniportamento locale e, per passare da questa nozione locale ad una ...
Leggi Tutto
Laplace Pierre-Simon de
Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] Operatore di L.-Beltrami: è la generalizzazione del laplaciano per varietà differenziabili: se d è la derivata esterna e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali: II 689 e. ◆ [ANM] Polinomi di L.: polinomi armonici omogenei ...
Leggi Tutto
gradiente
gradiènte [Der. del part. pres. gradiens -entis del lat. gradi "procedere"] [LSF] Oltre che nei signif. rigorosi dell'analisi vettoriale (per i quali v. oltre: G. di uno scalare), il termine [...] : III 328 a. ◆ [ANM] G. di un campo scalare: operatore differenziale che, applicato a un campo scalare s, dà, per il punto cui è m di aumento della profondità. ◆ [ANM] G. riemanniano: v. varietà riemanniane: VI 503 e. ◆ [GFS] G. termico verticale dell ...
Leggi Tutto
Gauss, Carl Friedrich
Luca Dell'Aglio
Uno dei 'prìncipi' della matematica
Tra Settecento e Ottocento il matematico tedesco Carl Friedrich Gauss ha rivoluzionato la matematica con la moderna teoria dei [...] Le sue idee hanno contribuito a far nascere la geometria differenziale adottata da Albert Einstein nella teoria della relatività e dimensioni. Nasce così in matematica la nozione di varietà, un concetto poi utilizzato da Albert Einstein nella teoria ...
Leggi Tutto
connessione
connessióne s. f. [dal lat. connexio -onis, der. di connexus, part. pass. di connectĕre «connettere»]. – 1. L’essere connesso, intima unione fra due o più cose; per lo più fig., legame di stretta relazione e interdipendenza tra...
differenziare
v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...