Stokes Sir George Gabriel
Stokes 〈stóuks〉 Sir George Gabriel [STF] (Skreen 1819 - Cambridge 1903) Prof. di matematica nell'univ. di Cambridge (1837); socio straniero dei Lincei (1888). ◆ [MCF] Costante [...] con la linea di circuitazione: v. campi, teoria classica dei: I 470 f. Nella geometria differenziale tale teorema si generalizza a varietà differenziabili: v. varietà riemanniane: VI 510 d. ◆ [GFS] Teoremi di S. (primo e secondo) della gravimetria: v ...
Leggi Tutto
iperspazio
iperspàzio [Comp. di iper- e spazio] [ALG] Spazio a più di tre dimensioni; il numero di queste s'indica generalm. con n, nel qual caso si parla anche di spazio di dimensione n. Tra i vari [...] coincidenti), ecc. Sfruttando i metodi della geometria differenziale oppure ricorrendo a costruzioni ipotetico-deduttive che s' casi si preferisce però parlare, anziché di i., di varietà, o semplic. di spazio, qualificando opportunamente il termine. ...
Leggi Tutto
metrica riemanniana
Luca Tomassini
Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] semiriemanniana. L’esistenza di una metrica riemanniana su una varietà Mν permette di definire una lunghezza l di una curva di lunghezza sufficientemente piccola sono curve di lunghezza minima.
→ Geometria differenziale; Variazioni, calcolo delle ...
Leggi Tutto
affinita
affinità [Der. di affine] [ALG] (a) Particolare omografia tra due piani in cui si corrispondono le rette improprie. (b) Nella geometria delle varietà, corrispondenza tra gli enti geometrici [...] per un campo vettoriale non uniforme la differenza dui-Γihkuhdxk si chiama differenziale assoluto e il tensore ui/k=ðui/ðxk+Γihk uh è la parte antisimmetrica dell'a. si annulla, come nelle varietà riemanniane, e rimangono solo 40 componenti; la parte ...
Leggi Tutto
teorema di Gauss-Bonnet
Luca Tomassini
Importante teorema della geometria differenziale, secondo il quale la caratteristica di Euler χ di una varietà compatta bidimensionale M è legata all’integrale [...] R non è regolare) della stessa ∂R. Nel caso di varietà riemanniane bidimensionali non compatte senza bordo N2, è valido un analogo -Bonnet ammette infine una generalizzazione al caso di varietà riemanniane regolari e compatte di dimensione pari 2d, ...
Leggi Tutto
foliazione
Luca Tomassini
Decomposizione di un oggetto geometrico n-dimensionale (una varietà) in termini di altri oggetti (sottovarietà) di dimensione più bassa, detti foglie. Più precisamente, si [...] sviluppi della teoria dei sistemi dinamici, nel qual caso la varietà M{[ è lo spazio delle fasi e la sua decomposizione , nel campo dei numeri complessi, le soluzioni di un’equazione differenziale dw/dz=f(z,w) con membro a destra analitico formano ...
Leggi Tutto
tensore di Ricci
Gilberto Bini
Sia M una varietà dotata di una metrica riemanniana. Indichiamo rispettivamente con gij e con Rijkl le espressioni locali della metrica riemanniana e delle componenti [...] una varietà riemanniana differisca dalla geometria dello spazio euclideo ordinario. Infatti, su una varietà si esprime in termini della forma di volume euclideo a meno di termini che coinvolgono il tensore di Ricci.
→ Geometria differenziale ...
Leggi Tutto
simboli di Christoffel
Gilberto Bini
Sia M una varietà dotata di una metrica riemanniana. Ricordiamo che essa si può esprimere localmente nella forma
dove (gik) è una matrice n×n hermitiana definita [...] di Levi-Civita, un operatore molto importante che fornisce un metodo per valutare la velocità con cui i vettori e i tensori variano sulla varietà. In simboli, l’operatore ∇ dato da
prende il nome di connessione di Levi-Civita.
→ Geometria ...
Leggi Tutto
Matematico francese (Montbéliard, Doubs, 1923 - Bures-sur-Yvette 2002), professore alla facoltà delle scienze di Strasburgo (1957-63), distaccato come professore permanente all'Institut des hautes études [...] membro dell'Institut (Académie des sciences) dal 1976. Fu uno dei più eminenti studiosi di topologia delle varietà e di topologia differenziale. Nel 1954 rese nota la sua teoria del cobordismo che gli valse la Fields Medal al Congresso internazionale ...
Leggi Tutto
Matematico italiano (Cento 1868 - Bologna 1938), prof. dal 1908 di meccanica razionale all'univ. di Bologna; socio corrispondente dei Lincei (1922). La sua opera scientifica s'inizia con ricerche di dinamica [...] di Hamilton-Jacobi) e si svolge, con ampiezza e varietà di temi, nell'analisi vettoriale, nell'astronomia (evoluzione fisica (in collab. con Q. Majorana, 1927), Fondamenti di geometria differenziale (in collab. con T. Boggio e C. Burali-Forti, 1929 ...
Leggi Tutto
connessione
connessióne s. f. [dal lat. connexio -onis, der. di connexus, part. pass. di connectĕre «connettere»]. – 1. L’essere connesso, intima unione fra due o più cose; per lo più fig., legame di stretta relazione e interdipendenza tra...
differenziare
v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...