(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] Siano a₁(t), a₂(t), …, an(t) funzioni note. Allora una soluzione f(t) dell'e. differenziale f(t)(n)+a₁(t)f(t)(n⁻¹)+…+an(t)=0 è una nuova funzione nota.
(P5)-Sia A una varietà abeliana su C di dimensione n e p: Cn→A la mappa di ricoprimento universale ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] il suo nome.
Lie cominciò con la teoria delle equazioni differenziali, che rimase sempre un punto di riferimento nel suo lavoro. particolarmente interessato ai gruppi che possono agire su una varietà di dimensione piccola, con il che egli intendeva ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] a una rete discreta che a una varietà continua. La lunghezza di Planck è così piccola che, nella scala alla quale noi possiamo misurare, tale discretezza viene appianata, ed è per questo che le equazioni differenziali danno una buona descrizione dell ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] in modo particolare le equazioni e i sistemi di equazioni differenziali lineari.
Il quinto capitolo sviluppa lo studio locale di una risultati principali della teoria delle varietàdifferenziali e delle varietà analitiche su un corpo valutato ...
Leggi Tutto
Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] , possibile adattare la (19) integrando nello spazio complesso ed evitando così la varietà P = 0. In tal modo si giunge a dimostrare che per ogni non differenziabile, possiamo ‛sostituire' a J′(u) il ‛sub-differenziale' ∂J(u) di J nel punto u:∂J(u) ...
Leggi Tutto
Fermat, ultimo teorema di
Massimo Bertolin
"Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] di spazio vettoriale complesso. Data f(z) in S2(N), il differenziale f(z)dz è invariante per l'azione di Γ0(N) ed è modulare X0(N) o, equivalentemente, con un anello di endomorfismi della varietà jacobiana J0(N) di X0(N).
Fissata una forma f in ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] i punti di vista ha un ruolo importante l'idea di varietà caratteristica che ha un'origine classica nello studio delle equazioni differenziali iperboliche. I sistemi in cui la varietà caratteristica è la più piccola possibile hanno un ruolo speciale ...
Leggi Tutto
Combinatoria
Peter J. Cameron
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] avuto il predominio. A seguito dello sviluppo del calcolo differenziale e integrale di Isaac Newton e Gottfried W. Leibniz stesso discreto: assomiglia più a una rete che a una varietà continua, se studiato su piccola scala, paragonabile alla lunghezza ...
Leggi Tutto
geometria
geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] Riemann hanno in seguito dato origine ad algoritmi assai validi per trattare la g. differenziale di una varietà in senso moderno, quali il calcolo differenziale, la teoria delle connessioni, ecc., che dovevano fornire ad A. Einstein i mezzi per ...
Leggi Tutto
Laplace Pierre-Simon de
Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] Operatore di L.-Beltrami: è la generalizzazione del laplaciano per varietà differenziabili: se d è la derivata esterna e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali: II 689 e. ◆ [ANM] Polinomi di L.: polinomi armonici omogenei ...
Leggi Tutto
connessione
connessióne s. f. [dal lat. connexio -onis, der. di connexus, part. pass. di connectĕre «connettere»]. – 1. L’essere connesso, intima unione fra due o più cose; per lo più fig., legame di stretta relazione e interdipendenza tra...
differenziare
v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...