• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
547 risultati
Tutti i risultati [547]
Matematica [153]
Fisica [83]
Biologia [57]
Medicina [60]
Temi generali [48]
Biografie [49]
Analisi matematica [40]
Fisica matematica [39]
Algebra [40]
Geometria [31]

selezione naturale

Enciclopedia dei ragazzi (2006)

selezione naturale Anna Loy Un gioco molto serio per la vita Ogni specie animale si riproduce in quantità superiori a quanto necessario per mantenere costante il numero di individui della specie. Parte [...] questo il caso dei topi, di cui si nutrono una grande varietà di predatori, tra cui civette, gufi, serpenti, falchi, volpi rapidi nel nascondersi dentro le tane. La sopravvivenza differenziale di questi individui rappresenta proprio il prodotto della ... Leggi Tutto
CATEGORIA: SISTEMATICA E BIOLOGIA DELL EVOLUZIONE
TAGS: EVOLUZIONE DELLE SPECIE – ORIGINE DELLE SPECIE – AMERICA MERIDIONALE – ISOLE GALÁPAGOS – CHARLES DARWIN
Mostra altri risultati Nascondi altri risultati su selezione naturale (2)
Mostra Tutti

Laplace Pierre-Simon de

Dizionario delle Scienze Fisiche (1996)

Laplace Pierre-Simon de Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] Operatore di L.-Beltrami: è la generalizzazione del laplaciano per varietà differenziabili: se d è la derivata esterna e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali: II 689 e. ◆ [ANM] Polinomi di L.: polinomi armonici omogenei ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – ACCADEMIA DI FRANCIA – EQUAZIONI ELLITTICHE – FORZA GRAVITAZIONALE – CORRENTE ELETTRICA
Mostra altri risultati Nascondi altri risultati su Laplace Pierre-Simon de (4)
Mostra Tutti

catastrofi, teoria delle

Enciclopedia della Matematica (2013)

catastrofi, teoria delle catastrofi, teoria delle teoria formulata dal matematico francese R. Thom che, con i modelli qualitativi (e non quantitativi) che ne derivano, consente di descrivere matematicamente [...] Ogni fenomeno è descrivibile scientificamente perché dietro la varietà dei suoi aspetti è rintracciabile una qualche modelli qualitativi allo stesso modo in cui una legge fisica, espressa da un’equazione differenziale, genera modelli quantitativi. ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE – TEORIA DELLE CATASTROFI – INSIEME COMPLEMENTARE – BACINO DI ATTRAZIONE – TEORIA DEI MODELLI
Mostra altri risultati Nascondi altri risultati su catastrofi, teoria delle (3)
Mostra Tutti

gradiente

Dizionario delle Scienze Fisiche (1996)

gradiente gradiènte [Der. del part. pres. gradiens -entis del lat. gradi "procedere"] [LSF] Oltre che nei signif. rigorosi dell'analisi vettoriale (per i quali v. oltre: G. di uno scalare), il termine [...] : III 328 a. ◆ [ANM] G. di un campo scalare: operatore differenziale che, applicato a un campo scalare s, dà, per il punto cui è m di aumento della profondità. ◆ [ANM] G. riemanniano: v. varietà riemanniane: VI 503 e. ◆ [GFS] G. termico verticale dell ... Leggi Tutto
CATEGORIA: BIOFISICA – ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METEOROLOGIA – METROLOGIA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su gradiente (4)
Mostra Tutti

Gauss, Carl Friedrich

Enciclopedia dei ragazzi (2005)

Gauss, Carl Friedrich Luca Dell'Aglio Uno dei 'prìncipi' della matematica Tra Settecento e Ottocento il matematico tedesco Carl Friedrich Gauss ha rivoluzionato la matematica con la moderna teoria dei [...] Le sue idee hanno contribuito a far nascere la geometria differenziale adottata da Albert Einstein nella teoria della relatività e dimensioni. Nasce così in matematica la nozione di varietà, un concetto poi utilizzato da Albert Einstein nella teoria ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – OSSERVATORIO ASTRONOMICO – GEOMETRIA DIFFERENZIALE – TEORIA DELLA RELATIVITÀ – GEOMETRIA ANALITICA
Mostra altri risultati Nascondi altri risultati su Gauss, Carl Friedrich (5)
Mostra Tutti

categoria

Enciclopedia della Matematica (2013)

categoria categoria in algebra astratta, termine indicante una struttura generale, che può essere considerata come terzo livello di astrazione dopo quello degli elementi di un insieme (qualunque sia [...] omomorfismi di algebre; ƒ) la categoria Diff delle varietà differenziabili con le applicazioni differenziabili. La teoria delle categorie della matematica: algebra, topologia algebrica, geometria differenziale, geometria algebrica, logica matematica. ... Leggi Tutto
TAGS: VARIETÀ DIFFERENZIABILI – GEOMETRIA DIFFERENZIALE – TEORIA DELLE CATEGORIE – APPLICAZIONI CONTINUE – APPLICAZIONI LINEARI
Mostra altri risultati Nascondi altri risultati su categoria (1)
Mostra Tutti

iperspazio

Dizionario delle Scienze Fisiche (1996)

iperspazio iperspàzio [Comp. di iper- e spazio] [ALG] Spazio a più di tre dimensioni; il numero di queste s'indica generalm. con n, nel qual caso si parla anche di spazio di dimensione n. Tra i vari [...] coincidenti), ecc. Sfruttando i metodi della geometria differenziale oppure ricorrendo a costruzioni ipotetico-deduttive che s' casi si preferisce però parlare, anziché di i., di varietà, o semplic. di spazio, qualificando opportunamente il termine. ... Leggi Tutto
CATEGORIA: ALGEBRA
Mostra altri risultati Nascondi altri risultati su iperspazio (3)
Mostra Tutti

metrica riemanniana

Enciclopedia della Scienza e della Tecnica (2008)

metrica riemanniana Luca Tomassini Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, ­simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] semiriemanniana. L’esistenza di una metrica riemanniana su una varietà Mν permette di definire una lunghezza l di una curva di lunghezza sufficientemente piccola sono curve di lunghezza minima. → Geometria differenziale; Variazioni, calcolo delle ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: VARIETÀ DIFFERENZIABILE – GEOMETRIA DIFFERENZIALE – SPAZIO VETTORIALE – PRODOTTO SCALARE – CAMPO TENSORIALE
Mostra altri risultati Nascondi altri risultati su metrica riemanniana (1)
Mostra Tutti

affinità

Dizionario delle Scienze Fisiche (1996)

affinita affinità [Der. di affine] [ALG] (a) Particolare omografia tra due piani in cui si corrispondono le rette improprie. (b) Nella geometria delle varietà, corrispondenza tra gli enti geometrici [...] per un campo vettoriale non uniforme la differenza dui-Γihkuhdxk si chiama differenziale assoluto e il tensore ui/k=ðui/ðxk+Γihk uh è la parte antisimmetrica dell'a. si annulla, come nelle varietà riemanniane, e rimangono solo 40 componenti; la parte ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – ALGEBRA
Mostra altri risultati Nascondi altri risultati su affinità (3)
Mostra Tutti

teorema di Gauss-Bonnet

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Gauss-Bonnet Luca Tomassini Importante teorema della geometria differenziale, secondo il quale la caratteristica di Euler χ di una varietà compatta bidimensionale M è legata all’integrale [...] R non è regolare) della stessa ∂R. Nel caso di varietà riemanniane bidimensionali non compatte senza bordo N2, è valido un analogo -Bonnet ammette infine una generalizzazione al caso di varietà riemanniane regolari e compatte di dimensione pari 2d, ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – TEOREMA DI GAUSS-BONNET – VARIETÀ RIEMANNIANE – CURVA REGOLARE – GEODETICA
1 2 3 4 5 6 7 8 ... 35 ... 55
Vocabolario
connessióne
connessione connessióne s. f. [dal lat. connexio -onis, der. di connexus, part. pass. di connectĕre «connettere»]. – 1. L’essere connesso, intima unione fra due o più cose; per lo più fig., legame di stretta relazione e interdipendenza tra...
differenziare
differenziare v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali