varietà simplettiche
Luca Tomassini
Una varietàdifferenziabile di dimensione pari M2n dotata di una struttura simplettica (o struttura hamiltoniana), ossia di una forma bilineare (o 2-forma) antisimmetrica [...] è assunta regolare. Per chiusura si intende invece la relazione dΦ=0, dove d indica l’operazione di differenziazione esterna delle forme. In una varietà simplettica, dunque, tutti gli spazi tangenti Tx(M2n) (x∈M2n) possiedono una struttura di spazio ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] vettoriali, in cui la fibra è uno spazio vettoriale Vn a n dimensioni, come i fibrati tangenti e cotangenti a una varietàdifferenziabile.
S. di Fréchet. È uno s. metrico i cui elementi sono le successioni di numeri (reali o complessi) (x1, x2 ...
Leggi Tutto
superficie Il contorno di un corpo, come elemento di separazione fra la parte di spazio occupata dal corpo e quella non occupata.
Diritto
Diritto di s. Diritto di fare e mantenere al di sopra del suolo [...] stessa metrica, cioè la stessa prima forma quadratica fondamentale. S. differenziabile S. rappresentata mediante funzioni differenziabili; è lo stesso che varietàdifferenziabile di dimensione 2 (➔ varietà). S. luogo S. intesa come luogo dei suoi ∞2 ...
Leggi Tutto
Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] chiamato duale di (S*, ∂*) rispetto a G. Per es., lo spazio vettoriale di tutte le n-forme su una varietàdifferenziabile munito di differenziazione è un complesso di cocatene detto complesso di De Rham e la sua coomologia si chiama coomologia di De ...
Leggi Tutto
Linea tracciata sopra una superficie e tale che in ogni suo punto la normale principale a essa coincida con la normale alla superficie in quel punto; ovvero tale che il piano osculatore alla linea risulti [...] una metrica la quale permetta di dare senso alla ‘lunghezza’ di una linea. Lo studio della g. di una superficie e, più in generale, di una varietàdifferenziabile è uno dei capitoli della geometria differenziale più studiati e più ricchi di problemi. ...
Leggi Tutto
In topologia, nozione, introdotta da C. Ehresmann e G. Reeb verso il 1950, che generalizza quella di spazio fibrato e che ha originato un ramo della topologia differenziale oggetto di ricerche e studi [...] approfonditi. Sia Vn una varietàdifferenziabile di dimensione n e sia data un’applicazione differenziabile f: Vn→Wn-p che sia di rango massimo in ogni punto di Vn (cioè la matrice jacobiana delle funzioni che esprimono la f. mediante coordinate ...
Leggi Tutto
Fisica
Per il nucleo esotico ➔ esòtico, nùcleo.
Geologia
In geotettonica, si dice esotico un blocco o lembo arealmente molto limitato di rocce alloctone, inglobato entro terreni litologicamente diversi [...] con essi rapporti stratigrafici, che appartiene a una stessa coltre di scivolamento gravitativo.
Matematica
Varietà esotica
Inizialmente indicava una varietàdifferenziabile omeomorfa a una sfera, ma non diffeomorfa a essa. Il termine esotico passò ...
Leggi Tutto
In geometria, si dice di c. n-m rispetto a N una varietàdifferenziabile M, di dimensione m, sottoinsieme di una varietà N di dimensione n (così le rette e i piani hanno, rispettivamente, c. uguali a 2 [...] e a 1 se pensati come sottoinsiemi dell’ordinario spazio tridimensionale) ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] superfici algebriche omeomorfe con diversi invarianti κ. Per contro κ è determinato dalla struttura della superficie come 4-varietàdifferenziabile. Rimane aperto il problema di vedere se lo spazio dei moduli delle superfici di tipo generale che sono ...
Leggi Tutto
Geometria
Edoardo Vesentini
Nel tracciare i lineamenti essenziali di una storia della matematica, Federigo Enriques osservava nel 1938: "A chi raffronti gli sviluppi che i diversi rami delle matematiche [...] e, più tardi, Clifford H. Dowker ed Edwin Spanier. La determinazione effettiva dei gruppi di coomologia Hq(X,ℝ) per una varietàdifferenziabile compatta X è legata all'opera di Georges de Rham. In una nota del 1928 Élie Cartan aveva congetturato che ...
Leggi Tutto
varieta1
varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono, negli...
differenziare
v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...