• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
1719 risultati
Tutti i risultati [1719]
Archeologia [196]
Arti visive [184]
Biologia [164]
Temi generali [174]
Medicina [143]
Matematica [110]
Diritto [101]
Storia [92]
Biografie [101]
Fisica [96]

Kodaira, Kunihico

Enciclopedia on line

Matematico giapponese (Tokyo 1915 - Kofu 1997), prof. dal 1951 all'univ. di Tokyo, quindi all'univ. di Princeton e dal 1965 alla Stanford Univ. (Palo Alto, California). Vincitore della Fields Medal nel 1954 In [...] la tecnica dei fasci, introdotta da J. Léray, ottenne importanti risultati, tra i quali una caratterizzazione, mediante condizioni di natura topologica, delle varietà algebriche tra le varietà analitiche complesse e compatte (teorema di Kodaira). ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: VARIETÀ ALGEBRICHE – J. LÉRAY – TOKYO – KOFU
Mostra altri risultati Nascondi altri risultati su Kodaira, Kunihico (1)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] ) e le restrizioni rUV devono soddisfare certe condizioni naturali. Un buon esempio è il fascio Ωp delle p-forme olomorfe su una varietà complessa M; per ogni sottoinsieme aperto U di M, Ωp(U) è definito come l'insieme delle p-forme olomorfe su U. La ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] L'analogo dell'ipotesi di Riemann è stato dimostrato da Deligne (v., 1974) estendendo a varietà algebriche astratte teoremi noti per varietà complesse e relativi alla teoria di Hodge. L'introduzione dei metodi coomologici ha anche permesso di gettare ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

Gruppi

Enciclopedia del Novecento (1978)

Gruppi GGeorge W. Mackey di George W. Mackey SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] f fra gli elementi di ℱℴ. Quando un tale ϕ esiste si dice che ℛ1 e ℛ2 sono varietà complesse isomorfe. Una funzione a valori complessi f su una varietà complessa ℛ si dice ‛meromorfa' se, per ogni punto p di ℛ, essa è il quoziente di due elementi di ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI NECESSARIE E SUFFICIENTI – TEOREMA FONDAMENTALE DELL'ALGEBRA – PRINCIPIO DI ESCLUSIONE DI PAULI – LEGGE DI RECIPROCITÀ QUADRATICA

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] metà del XX sec. da Thue (β≤(1/2)n+1), Siegel (Formula) e Dyson (Formula). Dualità per fibrati su varietà complesse compatte. J.-P. Serre dimostra importanti isomorfismi naturali tra le coomologie del fascio di germi di forme olomorfe a valori in ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] di Dedekind e, dall'altra, dal fatto che, essendo V un oggetto geometrico, dovrebbero valere certe analogie con le varietà complesse della topologia algebrica. Congettura 1: Z(V, t) è una funzione razionale di t. Congettura 2 (equazione funzionale ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] primi, negli anni 1950-1951, che si tratta di uno strumento naturale nello studio della teoria delle funzioni complesse su una varietà complessa. Grosso modo, e per fare soltanto un esempio, un fascio utile è quello dei germi delle funzioni olomorfe ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] (1904-1997) avevano fatto in geometria algebrica. A sua volta Weil aveva imparato dai lavori di Chern sulle varietà complesse come usare i fibrati in geometria algebrica. Da questa interazione nacque l'estensione di Chern delle idee di Pontrjagin ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

coomologia, gruppi di

Enciclopedia della Matematica (2013)

coomologia, gruppi di coomologia, gruppi di sequenza di gruppi abeliani, solitamente denotati con Hn(C) (un gruppo per ogni numero intero n), che si associa a un qualsiasi complesso di cocatene C. Come [...] de Rham (per varietà differenziabili) e la coomologia di Dolbeault (per varietà complesse). Dato un complesso di cocatene C è un sottogruppo di Zn(C). L’ennesimo gruppo di coomologia Hn(C) del complesso C è il gruppo quoziente Hn(C) = Zn(C)/Bn(C). I ... Leggi Tutto
TAGS: CLASSI DI EQUIVALENZA – COMPLESSO DI CATENE – BOTTIGLIA DI KLEIN – SPAZIO TOPOLOGICO – GRUPPO QUOZIENTE

Atiyah

Enciclopedia della Matematica (2013)

Atiyah Atiyah Michael Francis (Londra 1929) matematico inglese. Vincitore della Medaglia Fields nel 1966 per i suoi contributi alla teoria degli operatori su varietà complesse e del Premio Abel nel 2004 [...] per i suoi fondamentali contributi in topologia, geometria e analisi ... Leggi Tutto
TAGS: VARIETÀ COMPLESSE – MEDAGLIA FIELDS – PREMIO ABEL – TOPOLOGIA – LONDRA
Mostra altri risultati Nascondi altri risultati su Atiyah (4)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 172
Vocabolario
complèsso²
complèsso2 s. m. [dal lat. complexus -us, der. di complecti (cfr. la voce prec.); il sign. psicanalitico è un calco del ted. Komplex]. – 1. Il tutto, l’insieme, in quanto costituito di più parti o elementi: un c. di persone, di cose; la cittadinanza...
consonante
consonante s. f. [dal lat. consŏnans -antis (littĕra), part. pres. di consonare «consonare»]. – Ciascuno dei fonemi di una lingua che vengono pronunciati con il canale vocale chiuso (c. occlusive o momentanee) o semichiuso (c. semiocclusive...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali