Selezione di 7 problemi matematici proposti nel 2000 dal Clay Mathematics Institute (CMI) di Cambridge, Massachusetts, che ha stanziato per la risoluzione di ognuno di essi un premio di 1 milione di dollari. [...] sicurezza di alcuni codici crittografici. Congettura di Hodge Afferma che per le varietàalgebriche proiettive i cicli di Hodge sono combinazioni lineari razionali di cicli algebrici.
Congettura di Birch e Swinnerton-Dyer Afferma che si può stabilire ...
Leggi Tutto
continuo 1
contìnuo1 [agg. Der. del lat. continuus, da continere "tenere unito", comp. di cum "insieme" e tenere, e quindi "non interrotto"] [ALG] Applicazione c.: applicazione definita su uno spazio [...] e in media di ordine p: v. processi stocastici: IV 607 c. ◆ [ALG] Sistema c. di varietàalgebriche: insieme di varietà sopra una varietà ambiente dipendenti da certi parametri variabili con continuità; per es., l’insieme delle generatrici di una ...
Leggi Tutto
Kronecker Leopold
Kronecker 〈króonekër〉 Leopold [STF] (Liegnitz 1823 - Berlino 1891) Prof. di matematica nell'univ. di Berlino (1883); socio straniero dei Lincei (1883). ◆ [ANM] [INF] Algoritmo di K.: [...] omogenee, l'insieme delle loro soluzioni è rappresentato, nello spazio a r dimensioni, da un numero finito di varietàalgebriche irriducibili; (b) relativ. a matrice, → matrice: Rango di una matrice. ◆ [ALG] Teorema di K.-Steinitz: data un'equazione ...
Leggi Tutto
Agraria
Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] conduce a risultati interessanti che riguardano l’esistenza di soluzioni di equazioni differenziali sulla varietà.
V. lineare
V. algebrica irriducibile, che si possa porre in corrispondenza birazionale senza eccezioni con uno spazio proiettivo ...
Leggi Tutto
Nell’antichità classica, panno, generalmente di lino, usato sia come tovagliolo, sia come acconciatura femminile. Gli antichi agronomi chiamarono m. (perché spesso eseguite su tela) ogni rappresentazione [...] candidato (v. tab.). Per scoprire i geni si può impiegare un’ampia varietà di strumenti (la PCR, i marcatori del genoma, l’ibridazione) e di , con riferimento a insiemi dotati di strutture algebriche, sinonimo di morfismo (➔ categoria).
In topologia ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] esempio che chiarisce alcuni aspetti importanti del teorema fondamentale dell'algebra; esso riguarda la natura dei numeri reali e della nozione Riemann le frontiere naturali possono avere una grande varietà di forme. Anche quando sono cerchi possono ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] b interi ordinari, risulta che, (1+√5)/2 è radice dell'equazione algebrica x2−x−1=0, la quale ha coefficiente direttore uguale a 1: dal discreto, in particolare della teoria dei numeri. La varietà di queste relazioni è sorprendente, sia che si tratti ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] variabili risulta effettuata ed è possibile determinare in modo algebrico oppure per quadrature sia z sia m e, di il 1795 introduce un concetto analogo a quello che oggi chiamiamo varietà caratteristica. Si apre così la via a una teoria geometrica ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] di quello di Weierstrass da cui partivano per trattare una varietà di argomenti più avanzati. Si lasciò a Giulio Vivanti equazioni differenziali della forma
(dove F è razionale in w′, algebrica in w e analitica in z) si indirizzò per questo motivo ...
Leggi Tutto
Equazioni funzionali
Jacques-Louis Lions
La teoria delle equazioni funzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] tuttavia possibile adattare la [27] integrando nello spazio complesso ed evitando così la varietà P(ξ)=0. In tal modo si giunge a dimostrare che per ogni . Si perviene così a certe condizioni (algebriche), che devono essere soddisfatte dal sistema { ...
Leggi Tutto
varieta1
varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono, negli...
molteplicita
molteplicità (non com. moltiplicità; ant. multiplicità) s. f. [dal lat. tardo multiplicĭtas -atis]. – 1. Il fatto di essere molteplice o, più spesso, di essere molteplici (cioè più d’uno e di vario genere o aspetto): m. di interessi...