Scienza indiana: periodo classico. La scienza islamica in India
Mario Casari
Fabrizio Speziale
La scienza islamica in India
Contorni della scienza indo-islamica
di Mario Casari
Nel II millennio dell'era [...] schemi anatomici, settori del cielo, strumenti di studio, varietà animali e vegetali erano disegnate e dipinte con una l'altro importanti problemi di misurazione di parabole e paraboloidi. L'algebra si affrontava sul Kitāb al-faḫrī (Libro per Faḫr al- ...
Leggi Tutto
Scienza greco-romana. Euclide e la matematica del IV secolo
Reviel Netz
Euclide e la matematica del IV secolo
Sappiamo del IV sec. a.C. più di quanto non sappiamo del V, ma è sempre molto poco. Fra [...] opere, molto sofisticate, essi fanno mostra di una grande varietà di interessi matematici, e ciò lascia supporre che queste opere da Menecmo. Oggi esse sono ‘definite’ dalle loro proprietà algebriche, ma non era così nell’Antichità. Tor ne remo su ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] esempio che chiarisce alcuni aspetti importanti del teorema fondamentale dell'algebra; esso riguarda la natura dei numeri reali e della nozione Riemann le frontiere naturali possono avere una grande varietà di forme. Anche quando sono cerchi possono ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] più tardi Cartan dimostrerà l'esistenza in un lavoro sulla classificazione delle 'algebre di Lie'. Egli era particolarmente interessato ai gruppi che possono agire su una varietà di dimensione piccola, con il che egli intendeva uno spazio (euclideo ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] , una nuova curva detta duale. Se la prima curva è algebrica, risulta algebrica anche la curva duale e ci si può quindi chiedere se Riemann, ben compreso soltanto per le superfici, alle varietà n-dimensionali.
Un'idea della complessità che ciò ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] b interi ordinari, risulta che, (1+√5)/2 è radice dell'equazione algebrica x2−x−1=0, la quale ha coefficiente direttore uguale a 1: dal discreto, in particolare della teoria dei numeri. La varietà di queste relazioni è sorprendente, sia che si tratti ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] 1872, p. 17). Dal punto di vista algebrico, il problema si traduce nello sviluppo della teoria degli invarianti rispetto al gruppo di trasformazioni 'aggiunto', come dice Klein, alla varietà e ai suoi sottogruppi e nella conseguente classificazione ...
Leggi Tutto
Scienza greco-romana. La matematica nel V secolo
Reviel Netz
La matematica nel V secolo
Il titolo di questo capitolo è di per sé problematico. Decidere se al di là di alcuni lavori isolati si possa [...] , è facile stabilire un certo isomorfismo tra alcune relazioni algebriche e geometriche elementari. Per esempio, l’uguaglianza (a+ è tuttavia proprio la varietà. Ci si può chiedere allora per quale ragione questa varietà non si rifletta nelle ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] variabili risulta effettuata ed è possibile determinare in modo algebrico oppure per quadrature sia z sia m e, di il 1795 introduce un concetto analogo a quello che oggi chiamiamo varietà caratteristica. Si apre così la via a una teoria geometrica ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] capitolo riguarda la nozione generale di dimensione di un anello e di un'algebra. Il nono capitolo studia gli anelli locali noetheriani completi.
Varietà
Il fascicolo di risultati sulle Variétés différentielles et analitiques (VAR) espone le nozioni ...
Leggi Tutto
varieta1
varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono, negli...
molteplicita
molteplicità (non com. moltiplicità; ant. multiplicità) s. f. [dal lat. tardo multiplicĭtas -atis]. – 1. Il fatto di essere molteplice o, più spesso, di essere molteplici (cioè più d’uno e di vario genere o aspetto): m. di interessi...