MATEMATICA NON COMMUTATIVA
La seconda metà del 20° secolo ha visto lo sviluppo di una molteplicità di ricerche matematiche, alcune motivate da considerazioni puramente interne, altre ispirate da problemi [...] [X:f(x)?0} e U~f5{}[X~:f[/}}. Si può dimostrare che Ì(Uf)5U~f. Gli aperti Uf (risp. U~f) formano una base della topologia di X (risp. X~) e pertanto Ì è un omeomorfismo. In tal modo X può essere ricostruito a partire dall'anello di funzioni C(X ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] di un insieme astratto. In entrambi i casi, la classe di funzioni o l'insieme astratto sono dotati di una struttura topologica che permette l'uso dei concetti di limite e di continuità sulla base dell'estensione alla classe di funzioni o all'insieme ...
Leggi Tutto
Matematico (Dolomieu, Isère, 1869 - Parigi 1951). Professore nelle univ. di Montpellier, Lione, Nancy, fu chiamato nel 1909 a quella di Parigi, dove insegnò calcolo differenziale e integrale, poi (1920) [...] tornò alla teoria dei gruppi continui finiti per approfondirne lo studio, non dal punto di vista differenziale di S. Lie, bensì da quello integrale e, più precisamente, topologico. Sono state pubblicate le sue opere complete in 6 volumi (1952-55). ...
Leggi Tutto
Tutto ciò che la terra produce o che costituisce il risultato di un’attività umana.
Diritto
La categoria dei p. alimentari, che tende a sostituire quella dei p. agricoli, intesi come frutti naturali, [...] è data dal p. vettoriale); buona parte di essi gode della proprietà commutativa (come il p. scalare, il p. topologico, il p. di convoluzione), mentre in alcuni casi il p. è anticommutativo o alternante (ossia invertendo l’ordine dei fattori ...
Leggi Tutto
punto fisso
Luca Tomassini
Un punto x di un insieme X tale che F(x)=x per una determinata mappa F:X→X, ovvero di X in sé. Un tale punto si dirà anche punto fisso per F. La dimostrazione dell’esistenza [...] vari teoremi (o principi) di punto fisso. Non sorprendentemente, il caso di maggiore interesse è quello in cui X è uno spazio topologico e F è continua in un senso specifico. Il più semplice, ma non per questo meno importante, tra i teoremi di punto ...
Leggi Tutto
In matematica, nella topologia differenziale, teoria del c. (ideata da R. Thom attorno al 1954): se si considera la totalità delle varietà differenziabili compatte, prive di frontiera e aventi una stessa [...] finito, se invece n=4k il gruppo ha tanti generatori indipendenti quante sono le partizioni di k (➔ partizione). Il problema topologico di calcolare i gruppi di c. è così ricondotto al problema aritmetico, purtroppo non ancora risolto, di valutare le ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] V; i numeri della successione P1,P2,…,Pm−1 sono i numeri di Betti di V. Nell'annunciare le proprie ricerche di topologia, nel 1892 Poincaré sottolineava che i numeri di Betti non sono sufficienti a distinguere le varietà e dava infatti un esempio di ...
Leggi Tutto
densita
densità in fisica, termine che indica il rapporto tra la massa e il volume di un corpo. Per analogia, il termine denso è variamente utilizzato in matematica in opposizione a discreto.
Densità [...] che, in particolare, comporta che ogni numero reale è limite di una successione definita in Q.
Densità di un sottoinsieme in uno spazio topologico
La nozione di densità definita per uno spazio metrico può essere generalizzata a un arbitrario spazio ...
Leggi Tutto
indice
indice termine che, in matematica, assume diversi significati. Genericamente, esso è un numero o una lettera, di solito scritto a deponente, che distingue una grandezza da altre dello stesso genere: [...] un sottoinsieme di N, insieme dei numeri naturali e, in una successione, coincide con N.
☐ Nel piano complesso o in uno spazio topologico si chiama indice di un punto z in relazione a un cammino chiuso C la funzione definita, in tutti i punti che non ...
Leggi Tutto
Particolare tipo di numeri che rappresentano una generalizzazione dei numeri complessi.
I q. costituiscono un corpo non commutativo e un’algebra non commutativa sul campo dei numeri reali. Introdotti da [...] di sviluppare un calcolo infinitesimale. Ebbene, un celebre teorema di L.S. Pontrjagin (1932) afferma che gli unici corpi topologici connessi e localmente compatti sono il corpo R dei numeri reali, il corpo C dei numeri complessi e il corpo H ...
Leggi Tutto
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...
topologia
topologìa s. f. [comp. di topo- e -logia]. – 1. In geografia, lo studio del paesaggio e delle sue caratteristiche per individuare e definire i varî tipi di forme del suolo (l’insieme dei segni che si usano per rappresentare tali...