insieme
insième [Der. del lat. insemel, forma corrotta di insimul, comp. di in- e simul "insieme"] [ALG] Secondo la definizione di G. Cantor, ogni raccolta (aggregato, famiglia) di enti distinti, detti [...] I. creativo: v. Gödel, teorema di: III 57 d. ◆ I. dei tempi: v. sistemi, teoria dei: V 316 d. ◆ I. denso: v. spazio topologico: V 468 f. ◆ I. d’insuccesso: v. affidabilità: I 85 f. ◆ I. di pressione: v. insiemi statistici: III 218 c. ◆ I. di sistemi ...
Leggi Tutto
Gli sviluppi dell'algebra generale, o astratta, che ormai può denominarsi a. senz'altro (il termine "a. moderna" tende a cadere in disuso), sono stati così vasti e varî negli ultimi anni da far parlare [...] . Accade già in casi elementari che una struttura algebrica sia dotata anche di una struttura d'ordine e di una topologia (si pensi all'insieme dei numeri reali relativi). Uno degli indirizzi fondamentali della ricerca più recente appare quello della ...
Leggi Tutto
INTEGRAZIONE E MISURA
Giorgio Letta
. La moderna teoria dell'i. si occupa del concetto generale di "misura" e del concetto di "integrale" relativo a un'arbitraria misura. Essa costituisce una notevole [...] retta reale. Ricordiamo che per retta reale s'intende l'insieme R dei numeri reali, munito della sua abituale topologia. In questa topologia ogni insieme aperto è riunione di una famiglia numerabile di intervalli aperti, a due a due disgiunti (le sue ...
Leggi Tutto
OPERATIVA, RICERCA
Lucio Bianco-Mario Lucertini
(App. III, II, p. 315; IV, II, p. 669)
Premessa. − La r.o. è una disciplina che, a partire da radici culturali diversificate, ha acquisito soltanto negli [...] si presentano in un formato in cui, oltre a equazioni e disequazioni, sono presenti relazioni logiche, relazioni topologiche, relazioni di appartenenza a insiemi variamente definiti. Una trasformazione efficiente in un formato basato su equazioni e ...
Leggi Tutto
L'evoluzione temporale dei sistemi - in particolare di quelli deterministici, cioè tali che la conoscenza del sistema a un dato istante ne determina tutta l'evoluzione futura - è stata negli ultimi decenni [...] positività o dipendenza di una o più grandezze da altre) fanno sì che lo spazio delle fasi abbia anche una topologia e una geometria caratteristiche. Queste spesso pongono a loro volta delle limitazioni sui tipi di evoluzione temporale possibili, che ...
Leggi Tutto
GRAFO
Francesco Speranza
. Con linguaggio informale, si può dire che un g. è formato da certe entità (vertici) e da certi collegamenti fra queste (spigoli o archi): s'intende che ciascuno spigolo collega [...] , che non ne contengono altre. Esse si dicono "facce" del grafo. Per es., se pensiamo al g. della fig.1,C come un g. topologico tracciato nel piano, le facce sono le regioni contornate dalle sequenze di spigoli (r,s,t) e (t,u,v), oltre alla "faccia ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] con il quale questa misura si estende a una σ-algebra più grande che comprende gli insiemi definiti dai limiti.
Sia X un gruppo topologico localmente compatto. Una misura μ su una σ-algebra Σ in X si chiama misura di Haar a sinistra (o invariante a ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] della curva nei quali le valutazioni sono non nulle. Dedekind e Weber non riuscirono a trovare il modo di introdurre una topologia nell'insieme di tutte le valutazioni associate a un campo di funzioni. Krull estese il concetto di valutazione in modo ...
Leggi Tutto
DE GIORGI, Ennio
Enrico Moriconi
Nacque l’8 febbraio del 1928 a Lecce figlio di Nicola e di Stefania Scopinich.
La madre proveniva da una famiglia di navigatori di Lussino, mentre il padre era insegnante [...] . 842-850). La definizione, semplice, ma di portata vastissima, stabilisce che una successione {fk(x)} di funzioni definite su uno spazio topologico X, e a valori reali, o reali estesi, è Γ-convergente verso f se in ogni punto x0 dello spazio X sono ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] di Francesco Severi e Wei-Liang Chow sulle coordinate proiettive da assegnare a una varietà algebrica, per arrivare a quelle topologiche di Charles Ehresman e su fibrati vettoriali e classi caratteristiche di Shing-Shen Chern.
Il legame con la teoria ...
Leggi Tutto
topologia
topologìa s. f. [comp. di topo- e -logia]. – 1. In geografia, lo studio del paesaggio e delle sue caratteristiche per individuare e definire i varî tipi di forme del suolo (l’insieme dei segni che si usano per rappresentare tali...
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...