Steiner Jakob
Steiner (o Stainer) 〈stàinër〉 Jakob [STF] (Utzensdorf 1796 - Berna 1863) Prof. di geometria nell'univ. di Berlino (1834). ◆ [ALG] Curva di S. (o, assolut., steineriana s.f.): di una curva [...] con la particolarità che le sue sezioni con piani tangenti sono tutte curve spezzate in coppie di coniche. ◆ [ALG] Teorema di S. sulla generazione proiettiva di coniche: ogni conica irriducibile può essere concepita come luogo dei punti d'incontro di ...
Leggi Tutto
L’attività e l’operazione di rappresentare con figure, segni e simboli sensibili, o con processi vari, anche non materiali, oggetti o aspetti della realtà, fatti e valori astratti, e quanto viene così [...] Si pone allora il problema di esprimere una r. qualsiasi di G come somma diretta di r. irriducibili: la soluzione è possibile (teorema di H. Weyl) se G è un gruppo topologico compatto. Problema della r. In algebra, consiste nella ricerca di un gruppo ...
Leggi Tutto
integrabile
integràbile [agg. Der. del lat. integrabilis] [LSF] Che può essere integrato, sia nel signif. matematico (→ integrale), sia per significare che si tratta di cosa che può essere aggiunta o [...] ..., n, con αi, βi costanti opportune, determinate dai dati iniziali (si parla di moto quasi periodico). Si dimostra che (teorema di Poincaré) condizione necessaria e sufficiente per l'integrabilità è che esistano per il sistema n integrali primi in ...
Leggi Tutto
Banach Stefan
Banach 〈bànak〉 Stefan [STF] (Cracovia 1892 - Leopoli 1945) Prof. (1924) nell'univ. di Leopoli. ◆ [ALG] Algebra di B. (propr., algebra commutativa di B.): è un'algebra nella quale si sia [...] di Cauchy converge a un elemento dello spazio; per es., uno spazio di Hilbert: v. funzionale, analisi: II 771 a. ◆ [ALG] Teorema di B.-Alaoglu: v. algebre di operatori: I 98 a. ◆ [ALG] Teorema di B.-Steinhaus: v. funzionale, analisi: II 770 f. ...
Leggi Tutto
equazione
equazióne [Der. del lat. aequatio -onis "uguaglianza, uguagliamento", da aequare "uguagliare"] [LSF] Uguaglianza tra due espressioni (il primo e il secondo membro dell'e.) contenenti una o [...] razionali dei coefficienti; ecc. Ricordiamo inoltre il teorema di Ruffini-Abel: le e. algebriche di grado sistemi eterogenei) e la conservazione dell'energia. ◆ [MCS] E. di stato dal teorema del viriale: v. gassoso, stato: II 838 e. ◆ [ALG] E. ...
Leggi Tutto
Stokes Sir George Gabriel
Stokes 〈stóuks〉 Sir George Gabriel [STF] (Skreen 1819 - Cambridge 1903) Prof. di matematica nell'univ. di Cambridge (1837); socio straniero dei Lincei (1888). ◆ [MCF] Costante [...] : v. campi, teoria classica dei: I 470 f. Nella geometria differenziale tale teorema si generalizza a varietà differenziabili: v. varietà riemanniane: VI 510 d. ◆ [GFS] Teoremi di S. (primo e secondo) della gravimetria: v. geodesia: III 13 f ...
Leggi Tutto
congruenza
congruènza [Der. di congruente] [LSF] Corrispondenza fra due o più cose. ◆ [ALG] C. di numeri: relazione fra due numeri relativi interi a e b, tali che la differenza a-b è divisibile per un [...] a è primo con m, allora ap(m)=1 (mod m), essendo p(m) il numero di numeri fra 1 e m che sono primi con m; (b) piccolo teorema di Fermat: se p è primo e a non è multiplo di p, allora ap-1=1 (mod p). ◆ [ALG] C. geometrica: lo stesso che uguaglianza di ...
Leggi Tutto
cinetico
cinètico [agg. (pl.m. -ci) Der. del gr. kinetikós, da kinéo "muovere"] [LSF] Di grandezze o proprietà inerenti al moto e di solito aventi stretta connessione con questioni non solo geometriche [...] c.: equazioni che descrivono le caratteristiche macroscopiche di un sistema a partire dai suoi componenti microscopici: v. limite centrale, teorema del: III 415 e. ◆ [MCC] Momenti c.: nella meccanica analitica, le quantità ∂L/∂q✄h, dove L è la ...
Leggi Tutto
Eulero
Eulèro [STF] Forma italianizz. assai frequente del cognome di L. Euler. ◆ [ALG] [MCC] Angoli di E.: terna di angoli con cui s'individua l'orientamento di un solido intorno a un punto o, che è [...] normale e curvature principali di una superficie: v. curve e superfici: II 80 c. ◆ [ALG] Formula di E. dei poliedri: detta anche teorema di E., è la formula che lega, in un poliedro convesso di genere 0, il numero dei vertici V, delle facce F e degli ...
Leggi Tutto
Laguerre Edmond-Nicolas
Laguerre 〈lag✄èr〉 Edmond-Nicolas [STF] (Bar-le-Duc 1834 - m. 1886) Ufficiale di artiglieria, poi prof. di geometria nell'Accademia delle scienze di Parigi (1874). ◆ [ANM] Equazione [...] differenziali ordinarie nel campo reale: II 459 d. ◆ [ANM] Polinomio di L.: lo stesso che funzione di L. (v. sopra). ◆ [ALG] Teorema di L.: data un'equazione algebrica f(x)=0 a coefficienti reali e un numero positivo a, il numero delle radici reali ...
Leggi Tutto
teorema
teorèma s. m. [dal lat. tardo theorēma, gr. ϑεώρημα (propr. «ricerca, meditazione», der. di ϑεω-ρέω «esaminare, osservare»)] (pl. -i). – 1. Nella cultura classica e medievale, la «visione» sensibile o intellettiva e il relativo oggetto,...
inverso1
invèrso1 agg. e s. m. [dal lat. inversus, part. pass. di invertĕre «invertire»]. – 1. agg. Contrario, opposto, rovescio rispetto a un altro, rispetto al precedente, rispetto a ciò che è abituale: facciamo ora il caso i.; rifare il...