• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
194 risultati
Tutti i risultati [444]
Matematica [194]
Fisica [81]
Storia della matematica [80]
Algebra [37]
Biografie [39]
Fisica matematica [40]
Temi generali [35]
Analisi matematica [29]
Storia della fisica [30]
Statistica e calcolo delle probabilita [25]

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] questi problemi di minimo e la meccanica dei sistemi con un numero finito di gradi di libertà. Nella C1([a,b]) delle funzioni dotate di derivata prima continua su [a,b]. In base a un classico teorema di Henri-Léon Lebesgue (1875-1941), ogni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] Il lavoro dei due matematici mostra numerosi aspetti che saranno caratteristici degli studi a venire: numero qualunque di se e soltanto se la sua prima classe di Stiefel-Whitney è nulla. Allo scopo di generalizzare il teorema di Gauss-Bonnet a n ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] far uso dei gruppi di omologia singolare Hk(M). Posto βk=Rank(Hk(M)) (numeri di Betti di M) e indicato con Ck il numero di punti Ci limitiamo qui ad enunciare due teoremi particolarmente importanti. Il primo, che estende il corrispondente risultato di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Decisioni, teoria delle

Enciclopedia delle scienze sociali (1992)

Decisioni, teoria delle Jon Elster Introduzione Lo studio sistematico dei processi decisionali è stato avviato e messo a punto nel XX secolo. Le tre pietre miliari del suo sviluppo sono state: la nascita [...] dei vari risultati per I e per II, rispettivamente, sono rappresentate dai numeri nelle caselle: il primo numero rappresenta scelte collettive, se si accettano le condizioni del suo teorema. Fatta eccezione per la condizione di non dittatura, tutte ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: TEORIA DELL'UTILITÀ ATTESA – INFORMAZIONE ASIMMETRICA – SECONDA GUERRA MONDIALE – DILEMMA DEL PRIGIONIERO – TEORIA DELLE DECISIONI
Mostra altri risultati Nascondi altri risultati su Decisioni, teoria delle (7)
Mostra Tutti

Computazione, teoria della

Enciclopedia della Scienza e della Tecnica (2007)

Computazione, teoria della Fabrizio Luccio La necessità del calcolo, pur riconosciuta dall'uomo in tutte le epoche storiche, ha condotto solo in tempi relativamente recenti a una sistemazione teorica [...] formule indimostrabili nel calcolo dei predicati del primo ordine. Questo teorema è basato sulla costruzione si porta in uno stato f∈F, ove si arresta, in un numero finito di mosse: a questo punto il nastro contiene una stringa qualsiasi completata ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: CALCOLO DEI PREDICATI DEL PRIMO ORDINE – LINGUAGGI DI PROGRAMMAZIONE – RICORSIVAMENTE ENUMERABILE – CORRISPONDENZA BIUNIVOCA – TEOREMA DI INCOMPLETEZZA

Serie storiche, analisi delle

Enciclopedia delle scienze sociali (1997)

Serie storiche, analisi delle Franco Giusti Finalità Una serie storica è un insieme finito cronologicamente ordinato di osservazioni x₁, x₂, x₃,..., xT relative a un carattere X, generalmente equidistanti, [...] della diversa lunghezza dei mesi e del diverso numero di giornate lavorative hanno come riferimento fondamentale il teorema di Wold, il quale afferma Xt = Vt + Zt, di cui il primo costituisce la cosiddetta componente deterministica o singolare e il ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: ANALISI DELLE SERIE STORICHE – STATISTICAMENTE INDIPENDENTI – METODO DEI MINIMI QUADRATI – FUNZIONE DI TRASFERIMENTO – TRASFORMATA DI FOURIER
Mostra altri risultati Nascondi altri risultati su Serie storiche, analisi delle (2)
Mostra Tutti

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] il ruolo centrale che gioca l'interpolazione nelle applicazioni della matematica e nel calcolo numerico. Dopo i lavori di Newton e della scuola inglese dei primi del XVIII sec., l'interpolazione si basa sulle differenze finite. Si consideri una ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Dimostrazione, teoria della

Enciclopedia della Scienza e della Tecnica (2007)

Dimostrazione, teoria della Jean-Yves Girard La teoria della dimostrazione nasce negli anni Venti del Novecento come strumento di realizzazione del programma di David Hilbert per la fondazione della [...] clausole di Horn, vale a dire clausole della forma p1,…,pn⇒q, e per dei goal del tipo ∃y1,…,∃up A, dove A è una congiunzione D1 … Dtdi primo ordine stabilita dal teorema di Church. Senza contrazione sarebbe infatti possibile limitare il numero ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: FUNZIONE RICORSIVA PRIMITIVA – TEORIA DELLA DIMOSTRAZIONE – QUANTIFICATORE UNIVERSALE – LOGICA DEL PRIMO ORDINE – TEORIA DELLE CATEGORIE

Scienza indiana: periodo vedico. La matematica e l'astronomia nei testi vedici

Storia della Scienza (2001)

Scienza indiana: periodo vedico. La matematica e l'astronomia nei testi vedici Takao Hayashi David Pingree La matematica e l'astronomia nei testi vedici Espressioni numeriche nei testi vedici di Takao [...] e 333 (=3×111). È stato ipotizzato che il numero degli dèi, 3339, fornito da Ṛgveda (3.3.9), rappresenti o, equivalentemente, x2=1+(2m/15). La prima di queste tre relazioni è utilizzata negli Śulbasūtra somma mediante il teorema di Pitagora ottenendo ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. L'economia matematica 1870-1950

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. L'economia matematica 1870-1950 Angelo Guerraggio L'economia matematica 1870-1950 Di matematica sociale comincia a parlare Condorcet nella Francia [...] economici è semplice: si tratta in sostanza dei primi elementi del calcolo differenziale, che sono spesso confinati dimostrare il teorema di minimax, provando l'esistenza di soluzioni per ogni gioco finito (in cui i giocatori hanno un numero finito ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 18 ... 20
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
princìpio
principio princìpio s. m. [dal lat. principium, der. di princeps -cĭpis nel sign. di «primo»: v. principe]. – 1. a. L’atto e il fatto di cominciare, inizio: il p. di una azione, di un’impresa; il p. di una nuova vita; dare p., avviare, intraprendere...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali