• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
6 risultati
Tutti i risultati [15]
Geometria [6]
Matematica [10]
Storia della matematica [3]
Fisica [2]
Meccanica [2]
Storia della fisica [2]
Ottica [2]
Fisica matematica [2]
Meccanica dei fluidi [2]
Biografie [2]

teorema di Gauss-Bonnet

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Gauss-Bonnet Luca Tomassini Importante teorema della geometria differenziale, secondo il quale la caratteristica di Euler χ di una varietà compatta bidimensionale M è legata all’integrale [...] di Cohn-Vossen: Il teorema di Gauss-Bonnet ammette infine una generalizzazione al caso di varietà riemanniane regolari e compatte di dimensione pari 2d, detto teorema di Gauss-Bonnet-Chern. Quest’ultimo è una conseguenza del teorema dell’indice di ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – TEOREMA DI GAUSS-BONNET – VARIETÀ RIEMANNIANE – CURVA REGOLARE – GEODETICA

Geometria

Enciclopedia Italiana - VI Appendice (2000)

Geometria Ryoichi Kobayashi e Luigi Ambrosio Giovanni Bellettini (XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391) Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] tra g. globale e curvatura è uno dei più importanti risultati della g. del 20° secolo. Il punto di partenza di questo studio è il teorema di Gauss-Bonnet, il quale stabilisce che dove M è una superficie chiusa con una metrica, K è la curvatura e χ ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONE DIFFERENZIALE ORDINARIA – SCUOLA NORMALE SUPERIORE DI PISA – CARATTERISTICA DI EULERO – FUNZIONI DIFFERENZIABILI
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] n è dispari. Supponiamo che n sia pari, n=2p. Sia Ω=(Ωij) la forma di curvatura di una metrica riemanniana su M. Allora il teorema generalizzato di Gauss-Bonnet stabilisce: dove εi1 ... in è il segno della permutazione (i1, ..., in). Il fatto che l ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] . Per esempio, una varietà è orientabile se e soltanto se la sua prima classe di Stiefel-Whitney è nulla. Allo scopo di generalizzare il teorema di Gauss-Bonnet a n dimensioni, Carl Barnett Allendörfer (1911-1974) e André Weil (1906-1998) studiarono ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] risultato si generalizza con quello che è ora conosciuto come teorema di Bézout, il quale afferma ‒ ed è una caratteristica della , Pierre-Ossian Bonnet (1819-1892), mostrò che, nel caso di una superficie minima, l'applicazione di Gauss è conforme. ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Geometria superiore

Storia della Scienza (2003)

L'Ottocento: matematica. Geometria superiore David E. Rowe Geometria superiore Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] scoperta di nuovi e fondamentali risultati nella geometria delle superfici. L'approccio di Gauss fu esteso di rotazione, in una sorta di movimento a vite (screw-motion). Unendo il teorema di Chasles alla caratterizzazione di Poinsot dei sistemi di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – GEOMETRIA – STORIA DELLA MATEMATICA
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali