RELATIVITÀ
Christian Moller
Tullio Regge
Eugenio Garin
Relatività di Christian Møller
sommario: 1. Introduzione e panorama storico: a) il principio di relatività speciale. Sistemi inerziali; b) relatività [...] Σ è data da
dove, nel limite, P è contenuto in ogni triangolo P1P2P3 formato da archi di geodetiche di Σ.
In due dimensioni il tensorediRiemann ha appunto una sola componente, e questa può essere identificata con la curvatura gaussiana. Il limite ...
Leggi Tutto
La seconda rivoluzione scientifica: fisica e chimica. Relativita e gravitazione
Clive W. Kilmister
Relatività e gravitazione
Problemi relativi alla gravitazione newtoniana
Il successo della teoria [...] Levi-Civita (1873-1941), avevano generalizzato l'analisi di Gauss a un numero qualsiasi di dimensioni, dove la generalizzazione della R di Gauss era una matrice Rijkl, il tensorediRiemann-Christoffel.
Era necessario studiare innanzi tutto il caso ...
Leggi Tutto
riemannianoriemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] alla forma pitagorica è data dall'annullarsi del tensorediRiemann (←); questo permette di calcolare certe "curvature", che sono tutte nulle nel caso di uno spazio euclideo, mentre in generale danno una misura di quanto la varietà r. e la relativa ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] V 2 a. ◆ [ALG] Superficie ellittica e iperellittica di R.: v. Riemann, superfici di: V 3 a. ◆ [RGR] Tensoredi curvatura di R.: lo stesso che tensoredi R.-Christoffel (v. oltre). ◆ [RGR] Tensoredi R.: tensore del quarto ordine che si associa a una ...
Leggi Tutto
gravitazione
gravitazióne [Der. di gravità] [MCC] [RGR] Proprietà caratteristica e fondamentale, insieme con l'inerzia, della materia, consistente nel fatto che fra due corpi materiali (generic., fra [...] dello spazio tempo, che da piatto in assenza di sorgenti acquista una curvatura; le equazioni di campo di Einstein collegano appunto la curvatura nel senso diRiemann alle componenti del tensore energia-impulso. Le verifiche sperimentali della teoria ...
Leggi Tutto
Cauchy Augustin-Louis
Cauchy ⟨koshì⟩ Augustin-Louis (Parigi 1789 - Sceaux, Seine, 1857) Ingegnere, poi (1815) prof. nella Ècole Polytechnique, alla Sorbona e al Collège de France; non accettando il [...] v. elasticità, teoria dell’: II 252 e. ◆ Tensoredi C.-Green: v. elasticità, teoria dell’: II 253 e. ◆ Teorema di C.-Liouville: v. funzioni di variabile complessa: II 778 f. ◆ Teorema di decomposizione polare di C.: v. meccanica dei continui: III 688 ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] coordinate grassmanniane. ◆ [MCC] V. integrale: v. meccanica analitica: III 653 e. ◆ [ALG] V. jacobiana: v. Riemann, superfici di: V 6 a. ◆ [ANM] V. lineare: è un sottoinsieme di uno spazio lineare V della forma x₀+L, dove x₀ è un generico elemento ...
Leggi Tutto