RELATIVITÀ, Teoria della (XXIX, p. 15; App. II, 11, p. 681; III, 11, p. 597)
Carlo Cattaneo
La fisica classica era dominata dalla nozione di tempo assoluto, al quale tutti i fenomeni s'intendevano subordinati. [...] che, se le sorgenti del campo sono tutte al finito, il tensore R diRiemann presenta il seguente modo di decadimento asintotico:
l'indice designando la classe di Petrov. La distanza ha quindi ufficio di filtro per le diverse classi presenti nel campo ...
Leggi Tutto
La seconda rivoluzione scientifica: fisica e chimica. Relativita e gravitazione
Clive W. Kilmister
Relatività e gravitazione
Problemi relativi alla gravitazione newtoniana
Il successo della teoria [...] Levi-Civita (1873-1941), avevano generalizzato l'analisi di Gauss a un numero qualsiasi di dimensioni, dove la generalizzazione della R di Gauss era una matrice Rijkl, il tensorediRiemann-Christoffel.
Era necessario studiare innanzi tutto il caso ...
Leggi Tutto
Christoffel Elwin Bruno
Christoffel 〈krìstofël〉 Elwin Bruno [STF] (Montjoie, Renania, 1829 - Strasburgo 1900) Prof. di analisi algebrica e infinitesimale nelle univ. di Zurigo (1862), Berlino (1869), [...] formule di quadratura approssimata. ◆ [ANM] Simboli di C.: coefficienti che intervengono nella definizione di derivata covariante, tramite la quale si definisce il differenziale in uno spazio curvo: v. tensore: VI 124 d. ◆ [ANM] TensorediRiemann-C ...
Leggi Tutto
riemannianoriemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] alla forma pitagorica è data dall'annullarsi del tensorediRiemann (←); questo permette di calcolare certe "curvature", che sono tutte nulle nel caso di uno spazio euclideo, mentre in generale danno una misura di quanto la varietà r. e la relativa ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] V 2 a. ◆ [ALG] Superficie ellittica e iperellittica di R.: v. Riemann, superfici di: V 3 a. ◆ [RGR] Tensoredi curvatura di R.: lo stesso che tensoredi R.-Christoffel (v. oltre). ◆ [RGR] Tensoredi R.: tensore del quarto ordine che si associa a una ...
Leggi Tutto
GRAVITAZIONE
Edoardo Amaldi-Massimo Testa
(XVII, p. 770)
Dal 1915-16, quando A. Einstein pubblicò i primi lavori in cui poneva le basi della relatività generale (RG), fino alla metà del secolo questa [...] rappresentano il fondamentale punto di partenza della teoria classica (relatività generale).
Si parte dal tensore metrico, gμν e diRiemann e molti altri concetti più o meno sofisticati della geometria algebrica. Teorie di questo tipo sono in grado di ...
Leggi Tutto
Fisica matematica
EEugene P. Wigner
di Eugene P. Wigner
Fisica matematica
sommario: 1. Introduzione. 2. Il ruolo della matematica nella fisica. a) Uno schema dei concetti fondamentali della fisica. [...] come l'osservabile fondamentale. L'integrale invariante, la cui variazione egli pone uguale a zero, contiene il tensoredi curvatura diRiemann R, cioè un'espressione assai complicata funzione delle gik e delle loro derivate rispetto alle xi che però ...
Leggi Tutto
Simmetrie e invarianze
LLuigi A. Radicati di Brozolo
di Luigi A. Radicati di Brozolo
SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] η è la matrice diagonale 4×4 con elementi (1, −1, −1, −1) (tensoredi Minkowski) e c è la velocità della luce. Gli elementi (a, Λ) e Gc diRiemann e di Einstein di dare una descrizione geometrica della fisica. Non è stato ancora trovato il modo di ...
Leggi Tutto
Cauchy Augustin-Louis
Cauchy ⟨koshì⟩ Augustin-Louis (Parigi 1789 - Sceaux, Seine, 1857) Ingegnere, poi (1815) prof. nella Ècole Polytechnique, alla Sorbona e al Collège de France; non accettando il [...] v. elasticità, teoria dell’: II 252 e. ◆ Tensoredi C.-Green: v. elasticità, teoria dell’: II 253 e. ◆ Teorema di C.-Liouville: v. funzioni di variabile complessa: II 778 f. ◆ Teorema di decomposizione polare di C.: v. meccanica dei continui: III 688 ...
Leggi Tutto
UNITARIE, TEORIE RELATIVISTICHE
Bruno FINZI
Il concetto di campo costituisce, per dirla con A. Einstein, "il maggior successo dell'uomo nella scienza". Esso permette dì rappresentare con continuità [...] emisimmetrica
Al campo fondamentale s'impone, come negli spazî diRiemann: di dare la metrica [1]; di fungere da costante nella derivazione tensoriale; di mantenere costante anche il tensoredi Ricci con esso costruito. Precisamente:
La seconda e la ...
Leggi Tutto