Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] di legame è realizzato dal 'tensore metrico' della varietà. La struttura simplettica permette didi tre geodetiche chiuse caratterizzate dall'assenza di autointersezioni). Franks ha dimostrato un risultato analogo per le metriche con curvaturaRiemann ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] matrice di 2-forme (Ωij) si chiama forma dicurvatura e Rijkχ sono le componenti del tensoredicurvatura rispetto una specie di numero di Eulero e il teorema diRiemann-Roch-Hirzebruch esprime χp(M;E) mediante le classi di Chern di E e di M quando ...
Leggi Tutto
curvatura scalare
Luca Tomassini
Sia Mν una varietà riemanniana regolare, ovvero una varietà C∞ sulla quale è specificato un campo tensoriale definito positivo g(x) (x indica qui un sistema di coordinate [...] . Sia inoltre TMν lo spazio dei campi vettoriali regolari tangenti a Mν. La curvatura su Mν è normalmente caratterizzata in termini del tensoredi (curvaturadi) Riemann, un’applicazione multilineare R:TMν×TMν× ×TMν→TMν definita dalla formula
R(X ...
Leggi Tutto
In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] forma pitagorica è data dall’annullarsi del ‘tensorediRiemann’; questo permette di calcolare certe ‘curvature’, che sono tutte nulle nel caso di uno spazio euclideo, mentre in generale danno una misura di quanto la varietà riemanniana e la relativa ...
Leggi Tutto
TENSORIALE, ALGEBRA e ANALISI
Dionigi Galletto
Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] del suddetto vettore, segue che le Rhkij sono le componenti di un tensore quadruplo, il cosiddetto "tensorediRiemann" (o "tensorediRiemann-Christoffel", o anche "tensoredicurvatura"), che svolge un ruolo fondamentale in tutta la geometria ...
Leggi Tutto
Matematica: problemi aperti
Claudio Procesi
Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] , esprimono il tensoredicurvatura F=dA+A A di una connessione A su un fibrato con gruppo strutturale G e hanno la forma (derivata dalla lagrangiana L)
[7] formula.
Esse sono una naturale continuazione del programma diRiemann sui fondamenti della ...
Leggi Tutto
L'Ottocento: matematica. La geometria non euclidea
Rossana Tazzioli
La geometria non euclidea
Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] nozione dicurvatura sarà estesa dallo stesso Riemann a una varietà qualsiasi (anche con curvatura non costante) in un lavoro del 1861, pubblicato postumo nel 1876, dove verrà introdotta un'espressione denominata in seguito 'tensoredicurvaturadi ...
Leggi Tutto
Anatomia
Muscolo volontario o involontario che ha la funzione di tendere un organo o una formazione anatomica: t. del palato, contrae il palato molle; t. del tarso, nell’orbita, comprime i punti lacrimali [...] La derivazione covariante si estende a un qualunque campo ditensori. Per es., per un t. triplo Trpq si il t. dicurvatura. Il t. diRiemann si incontra anche quando si eseguono due derivazioni covarianti successive in un campo di vettori vh. ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] Ottanta, Poincaré e Klein avanzarono la congettura che ogni superficie diRiemann (che si può supporre dicurvatura costante) è l'insieme quoziente del piano complesso, della sfera diRiemann o del disco non euclideo rispetto a un gruppo discreto ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] V 2 a. ◆ [ALG] Superficie ellittica e iperellittica di R.: v. Riemann, superfici di: V 3 a. ◆ [RGR] Tensoredicurvaturadi R.: lo stesso che tensoredi R.-Christoffel (v. oltre). ◆ [RGR] Tensoredi R.: tensore del quarto ordine che si associa a una ...
Leggi Tutto