• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
17 risultati
Tutti i risultati [195]
Analisi matematica [17]
Matematica [92]
Biografie [30]
Fisica [30]
Storia della matematica [27]
Geometria [20]
Fisica matematica [20]
Algebra [16]
Storia della fisica [14]
Arti visive [13]

L'Ottocento: matematica. Calcolo delle variazioni

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo delle variazioni Craig Fraser Calcolo delle variazioni Il problema di Euler Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] considerando una singola particella vincolata a muoversi sulla superficie di una sfera, ma non soggetta ad alcuna altra di una funzione utilizzata in altri settori dell'analisi matematica. Quel tipo di ragionamento fu chiamato da Riemann 'principio di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni Craig Fraser Mario Miranda Calcolo delle variazioni Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] Riemann (1826-1866). Hilbert fu il primo a fornire una dimostrazione del principio di Dirichlet o se si vuole, della congettura di appesa al bordo metallico, realizzando materialmente la superficie di area minima fra quelle aventi il filo come ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Cauchy Augustin-Louis

Dizionario delle Scienze Fisiche (1996)

Cauchy Augustin-Louis Cauchy ⟨koshì⟩ Augustin-Louis  (Parigi 1789 - Sceaux, Seine, 1857) Ingegnere, poi (1815) prof. nella Ècole Polytechnique, alla Sorbona e al Collège de France; non accettando il [...] (a)  esprime il legame esistente all’equilibrio tra lo sforzo σn relativo alla superficie di normale n e quelli σi (i=1,2,3) relativi a tre piani coordinati di normali ei nell’intorno di un punto generico in un sistema elastico continuo; essa è σn=σ1 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: DISTRIBUZIONE DI PROBABILITÀ – EQUAZIONE DIFFERENZIALE – DENSITÀ DI PROBABILITÀ – INDICE DI RIFRAZIONE – ÈCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Cauchy Augustin-Louis (3)
Mostra Tutti

integrale

Dizionario delle Scienze Fisiche (1996)

integrale integrale [s.m. e agg. Der. del lat. integralis, da integer "intero"] [LSF] Relativo alla considerazione di una totalità di elementi o che concorre alla costituzione di questa totalità. ◆ [ANM] [...] di integrazione (←) e il risultato di esso. ◆ [ANM] I. abeliano: v. superfici di Riemann: V 5 d. ◆ [ANM] I. completo: v. meccanica analitica: III 656 b. ◆ [ANM] I. curvilineo di differenziale bilineare), esteso però a una superficie S: ∫Sf dS, ∫Sv✄n ... Leggi Tutto
CATEGORIA: FISICA DEI PLASMI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – TEMI GENERALI – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

connessione

Dizionario delle Scienze Fisiche (1996)

connessione connessióne [Der. del lat. connessio -onis, dal lat. connexus (→ connesso) "l'essere connesso, il modo in cui si è connessi"] [ALG] [ANM] Generic., legame di dipendenza fra due o più grandezze [...] di c. delle varie c. si chiama caratteristica di Eulero della varietà. Nel caso di una superficie, l'ordine di di carattere differenziale e che si possono ritenere, in un certo senso, come generalizzazioni degli spazi di Riemann; a seconda del tipo di ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su connessione (1)
Mostra Tutti

varieta

Dizionario delle Scienze Fisiche (1996)

varieta varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] [ALG] V. jacobiana: v. Riemann, superfici di: V 6 a. ◆ [ANM] V. lineare: è un sottoinsieme di uno spazio lineare V della forma x una v.: estensione alle v. del concetto di tangente a una curva e a una superficie: v. varietà differenziabili: VI 489 c e ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su varieta (6)
Mostra Tutti

ellittico

Dizionario delle Scienze Fisiche (1996)

ellittico ellìttico [agg. (pl.m. -ci) Der. di ellisse "che riguarda l'ellisse"] [ALG] [ANM] Qualifica che in vari casi discende dalla proprietà dell'ellisse, che la distingue dalle altre coniche, di [...] a una retta data e passi per un punto dato: → riemanniano: Geometria riemanniana. ◆ [ANM] Integrali e.: hanno la Problema e.: v. Montecarlo, metodo: IV 101 f. ◆ [ALG] Punto e. di una superficie: v. curve e superfici: II 78 e. ◆ [ANM] Sistema e.: v. ... Leggi Tutto
CATEGORIA: ACUSTICA – ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA MATEMATICA – OTTICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
1 2
Vocabolario
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali