La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] particolare per lo studio delle catene di Markov): esso assicura la possibilità di costruire uno spazio probabilizzato e, su di esso, una successione (Xn)n≥0 di variabili aleatorie, in modo tale che X0 ammetta un'assegnata legge e per ciascun n≥0, Xn ...
Leggi Tutto
Araldica
Le p. sono divisioni dello scudo mediante una o più linee orizzontali, verticali, diagonali o per mezzo di linee convergenti, al fine di creare campi diversi per accogliere stemmi o figure a seguito [...] gli addendi si considerano prescindendo dall’ordine, le p. coincidono con i coefficienti di serie esponenziali, dette anche funzioni generatrici della successione delle partizioni. Così, dette p(n) le p. di n con parti non ripetute e p′(n) le p. di n ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] , ed è data da un'unica relazione binaria R tale che x∈Xn⇔R(x,n). Allora, l'unione degli insiemi Xn in questa successione è definita da
[12] ∀x[x∈X⇔∃nR(x,n)].
Sulla base di questo principio ristretto dell'estremo superiore, Weyl fu capace di mostrare ...
Leggi Tutto
Scienza indiana: periodo classico. Matematica
Takao Hayashi
Matematica
'Gaṇita' ('matematica')
Prima dell'introduzione e diffusione dell'astrologia oroscopica e dell'astronomia matematica nella società [...] )1/2, in cui A è l'area di un cerchio massimo.
Āryabhaṭa dà anche formule corrette per somme di progressioni aritmetiche, successioni di numeri naturali, serie di quadrati e di cubi (vv. 19-22), ma non parla di progressioni geometriche. Dati
A(n) =a ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] punti qualsiasi, D(x,z) è minore della somma di D(x,y) e D(y,z). Fréchet definiva poi il concetto di convergenza: una successione {xn} converge a un punto x se e solo se D(xn,x) converge a 0. In questo modo, l'insieme astratto diventa una L-classe ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] soprattutto quando si tratta di iterazioni volte a ottenere una data precisione; in questi casi ci si limita alla descrizione della successione di passi da ripetere. L'idea che il test di precisione e l'iterazione dei passi facciano anch'essi parte ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] di compattezza di Palais e Smale. Tale condizione vale per una funzione f:X→ℝ di classe almeno C2 se le successioni che annullano il gradiente sono compatte. Quando questa condizione è soddisfatta si può provare un lemma di deformazione che permette ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] di Maclaurin (che si ottiene dalla [2] ponendo x=0); l'esempio di Cauchy mostrava che le cose non stavano in questo modo. Alla successione infinita di valori f(0), f′(0), f″(0),… potevano corrispondere funzioni differenti, come f(x)=e-1/x2, g(x)=e−1 ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali
Roshdi Rashed
Gli archimedei e i problemi infinitesimali
La storia della geometria infinitesimale, [...] 'asse XF con punti di ascissa (bi)0≤i≤n, con (Ii)1≤i≤n, (Ci)1≤i≤n e I1=0 i volumi dei cilindri omologhi, e se si considera poi la successione (cj)0≤j≤2n, con b0=c0, bn=c2n, c2i+1=(bi+bi+1)/2 e (I′j)1≤j≤2n e (C′j)1≤j≤2n i volumi dei cilindri omologhi ...
Leggi Tutto
La scienza in Cina: l'epoca Song-Yuan. La matematica
Karine Chemla
Annick Horiuchi
Andrea Eberhard-Bréard
La matematica
La rinascita della matematica e la tarda tradizione settentrionale
di Karine [...] numero la potenza di 10 a cui corrisponde una data cifra dipende dalla posizione che questa occupa nella successione delle cifre che rappresentano un numero. Inoltre, e parallelamente all'estensione del 'medesimo metodo di addizione e moltiplicazione ...
Leggi Tutto
successione
successióne s. f. [dal lat. successio -onis, der. di succedĕre «succedere»]. – 1. Il succedere ad altri, cioè il subentrare, il prendere il posto di un altro in una carica, in un ufficio, in un titolo, nella proprietà di un bene,...
registro
s. m. [lat. tardo regesta -orum, neutro pl.; v. regesto]. – 1. Libro, quaderno, fascicolo o volume formato da un certo numero di fogli (per lo più numerati progressivamente, contrassegnati e forniti di suddivisioni e indicazioni varie),...