La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] e finita (Brouwer era stato anticipato in questa concezione del continuo da Borel). Con i numeri reali concepiti come successionidiCauchy a scelta, una funzione reale a valori reali può essere determinata usando soltanto una quantità finita ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali
Roshdi Rashed
Gli archimedei e i problemi infinitesimali
La storia della geometria infinitesimale, [...] tale che
,
dove (uk)1≤k≤n, k=1, 2,…, n, è la successione dei numeri dispari a partire da 1; (b) esiste una successionedi segmenti (Hj)1≤j≤n, j=1, 2,…, n, con Hn=H e tale di Ibn al-Hayṯam equivale pertanto a quello di un integrale diCauchy-Riemann ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] certi numeri primi compaiono e si propagano come divisori di termini della successione un. In particolare, se un numero p di definire gli equivalenti del teorema dei residui diCauchy e del teorema di Riemann-Roch. Egli prendeva in esame le idee di ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] n>n1 e per ogni m intero positivo". A ognuna di queste successioni 'fondamentali' (oggi dette 'diCauchy') Cantor associava un numero b, definito a meno di una relazione di equivalenza per le successioni e il campo dei numeri reali era l'insieme ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] dei numeri reali, definiti per mezzo di 'successioni fondamentali', ossia successionidi numeri razionali, che soddisfano la condizione di convergenza diCauchy. L'insieme di quei numeri soddisfa un assioma di continuità, ed è a questo punto ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] astratti sono quelli di 'completezza' e di 'separabilità'.
Applicando il criterio di convergenza diCauchy, il quale viene comunemente utilizzato nell'analisi moderna, Fréchet definisce uno spazio metrico 'completo' quando ogni successione {xn}, tale ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] rs(n), il cerchio C dell'integrale diCauchy [10] viene suddiviso in archi secondo la successionedi Farey (partizione di Farey), e il contributo delle singolarità dell'integrale diCauchy dovute ai punti razionali viene attentamente e abilmente ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti
Roger Cooke
Brian Griffith
La topologia degli insiemi di punti
La topologia generale o topologia degli insiemi [...] di un quadrato. L'affermazione diCauchy secondo la quale la somma di una serie convergente didi una successionedi funzioni continue non è continuo formano un insieme di prima categoria. Ne segue in particolare che il limite di una successionedi ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] steepest descent, già utilizzato da Cauchy nel 1847. Solo nel 1971, grazie a un lavoro di John Reid, il metodo del nel 1935 da P. Erdős e P. Turán: se una successionedi interi non contiene tre elementi in progressione aritmetica, ha densità ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La nascita della matematica moderna: 1600-1700
Enrico Giusti
La nascita della matematica moderna: 1600-1700
Costringere un movimento storico nell'ambito [...] riapparire, più di un secolo dopo e in un contesto radicalmente mutato, nella sistemazione di Augustin-Louis Cauchy.
Il 'linguaggio ben presente che tra i due punti di vista non c'è né successione temporale, né dipendenza concettuale; al contrario ...
Leggi Tutto