• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
agenda
atlante
diritto
il chiasmo
il faro
Le parole valgono
lingua italiana
webtv
1018 risultati
Tutti i risultati [17151]
Matematica [1018]
Biografie [3206]
Arti visive [2244]
Fisica [1177]
Storia [1154]
Diritto [1110]
Temi generali [979]
Archeologia [854]
Medicina [629]
Geografia [495]

spazio vettoriale topologico

Enciclopedia della Scienza e della Tecnica (2008)

spazio vettoriale topologico Luca Tomassini Lo sviluppo di settori dell’analisi funzionale, quali per esempio la teoria delle distribuzioni, ha mostrato che in molti casi è utile considerare spazi lineari [...] che λx∈U per ∣λ−λ0∣〈ε e x∈V. Il legame esistente tra la topologia e le operazioni algebriche sullo spazio S pone sulla topologia stessa restrizioni estremamente rigorose: non solo essa può essere assegnata tramite un sistema di intorni dello zero ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEORIA DELLE DISTRIBUZIONI – SISTEMA DI INTORNI – ANALISI FUNZIONALE – NUMERI COMPLESSI – SPAZI VETTORIALI
Mostra altri risultati Nascondi altri risultati su spazio vettoriale topologico (1)
Mostra Tutti

spazio dei moduli

Enciclopedia della Scienza e della Tecnica (2008)

spazio dei moduli Fabrizio Andreatta In geometria algebrica gli spazi di moduli sono spazi che parametrizzano classi di isomorfismo di oggetti di tipo fissato e appaiono solitamente nella classificazione [...] del tipo che vogliamo classificare, parametrizzate da V. Diremo che il problema di moduli in questione è rappresentabile o ammette uno spazio dei moduli fine se esiste una varietà M e una famiglia S sopra M tale che ogni altra, parametrizzata da una ... Leggi Tutto
CATEGORIA: GEOMETRIA

spazio di Fourier

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Fourier Francesco Calogero La trasformata di Fourier F(k) di una data funzione f(x) definita sull’intero asse reale e che si annulla (abbastanza rapidamente) all’infinito, f(±∞)=0, si definisce [...] F(k) si annulla asintoticamente, F(±∞)=0. Lo spazio di Fourier è per l’appunto lo spazio delle funzioni F(k), mentre talvolta lo spazio delle funzioni f(x) viene indicato come spazio delle configurazioni. Questo linguaggio è particolarmente usato in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZIO DELLE CONFIGURAZIONI – CORRISPONDENZA BIUNIVOCA – TRASFORMATA DI FOURIER – MECCANICA QUANTISTICA – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su spazio di Fourier (1)
Mostra Tutti

spazio di Sobolev

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Sobolev Arrigo Cellina Per trattare problemi di equazioni differenziali ci si pone in spazi di funzioni che devono ammettere derivate in un qualche senso, anche debole, e devono essere completi [...] di Sobolev si definiscono le derivate in un senso distribuzionale, cioè mediante integrazione con funzioni test η. Sia Ω un aperto dello spazio a N dimensioni ℝN. Si dice che una funzione gi in L1(Ω) è la derivata parziale rispetto alla variabile xi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI – FUNZIONE VETTORIALE – DERIVATA PARZIALE – FUNZIONE TEST – GRADIENTE
Mostra altri risultati Nascondi altri risultati su spazio di Sobolev (1)
Mostra Tutti

spazio di Hilbert

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Hilbert Arrigo Cellina Per poter enunciare il teorema di Pitagora nel piano, occorre definire quando due vettori sono tra loro ortogonali; ciò si ottiene dalla nozione di prodotto scalare [...] , che associa a due vettori un numero reale (questo numero è zero se i due vettori sono ortogonali). Uno spazio di Hilbert ℋ è uno spazio di Banach che generalizza il normale piano euclideo, ossia su cui è definito un prodotto scalare. Si tratta di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – CLASSI DI EQUIVALENZA – TEOREMA DI PITAGORA – PRODOTTO SCALARE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su spazio di Hilbert (1)
Mostra Tutti

spazio di Banach

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Banach Arrigo Cellina Uno spazio normato X diventa metrico definendo la distanza tra due punti x e y, indicata con d(x,y), come d(x,y)=∥x−y∥. Se questo spazio metrico è ‘completo’, è cioè [...] tale che ogni successione di Cauchy converge, X viene detto spazio di Banach. I n umeri reali hanno questa proprietà di essere completi e gli spazi di Banach sono le naturali generalizzazioni dell’insieme dei numeri reali. → Convessità ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZIO NORMATO – SPAZIO METRICO – NUMERI REALI
Mostra altri risultati Nascondi altri risultati su spazio di Banach (1)
Mostra Tutti

iperspazio

Enciclopedia on line

In matematica, spazio a più dimensioni; il numero di queste si indica generalmente con n, nel qual caso si parla anche di spazio di dimensione n; poiché lo spazio ordinario è a tre dimensioni, in senso [...] lineare del tipo: a1x1+a2x2+...+anxn = 0; si definisce come ipersuperficie una varietà avente dimensione n−1; si definiscono gli spazi lineari di dimensione n−2, ... fino alle rette, di dimensione 1, mediante intersezione di due o più iperpiani; si ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA PROIETTIVA – GEOMETRIA EUCLIDEA – EQUAZIONE LINEARE – PERPENDICOLARITÀ – SPAZIO EUCLIDEO
Mostra altri risultati Nascondi altri risultati su iperspazio (3)
Mostra Tutti

compatto

Enciclopedia on line

Matematica Uno spazio (o un insieme di punti) si dice c. per successioni, o brevemente c., se ogni successione formata da infiniti punti scelti in esso ammette un punto di accumulazione anch’esso appartenente [...] allo spazio, o all’insieme. Così, per es., la circonferenza è un insieme c., mentre non lo è la retta euclidea, nella quale la viene poi generalizzata quando si passa dallo spazio ordinario a uno spazio topologico qualunque. medicina In anatomia, ... Leggi Tutto
CATEGORIA: GEOMETRIA – ANATOMIA
TAGS: CIRCONFERENZA – SUCCESSIONE – MATEMATICA – INSIEME – PUNTI
Mostra altri risultati Nascondi altri risultati su compatto (2)
Mostra Tutti

infinito

Enciclopedia on line

Lo spazio dalle dimensioni illimitate, o il tempo senza confini. Il pensiero greco si è occupato fin dalle sue origini del concetto di infinito. Delle soluzioni proposte dai pensatori della scuola ionica [...] data), retta all’i. di un piano la sua giacitura (l’astratto della classe dei piani paralleli al dato), piano all’i. dello spazio l’insieme dei punti e delle rette all’infinito. Le nozioni di punto all’i. e di retta all’i. permettono di formulare in ... Leggi Tutto
CATEGORIA: FILOSOFIA DEL LINGUAGGIO – GRAMMATICA – ANALISI MATEMATICA – GEOMETRIA – DOTTRINE TEORIE E CONCETTI
TAGS: PROIEZIONE STEREOGRAFICA – CORRISPONDENZA BIUNIVOCA – CLEMENTE ALESSANDRINO – GEOMETRIA PROIETTIVA – PASSAGGIO AL LIMITE
Mostra altri risultati Nascondi altri risultati su infinito (3)
Mostra Tutti

prospettiva

Enciclopedia on line

Rappresentazione degli oggetti nello spazio (nel disegno, nella pittura ma anche nella scultura in bassorilievo o altorilievo), in modo da raggiungere l’effetto della terza dimensione su una superficie [...] Nella storia delle arti figurative il termine p. viene usato in modo generico per indicare i diversi modi di rappresentazione dello spazio. Per tutta l’antichità e il Medioevo non esiste distinzione tra ottica e p.: sono gli artisti fiorentini del 15 ... Leggi Tutto
CATEGORIA: TEMI GENERALI – GEOMETRIA
TAGS: PITTURA ILLUSIONISTICA – PIERO DELLA FRANCESCA – GEOMETRIA DESCRITTIVA – BATTISTERO DI FIRENZE – GEOMETRIA PROIETTIVA
Mostra altri risultati Nascondi altri risultati su prospettiva (5)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 102
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
spaziaménto
spaziamento spaziaménto s. m. [der. di spaziare]. – 1. non com. L’atto e l’effetto dello spaziare, cioè del distanziare nello spazio. 2. In aeronautica, la distanza in linea retta tra due velivoli contigui di una formazione di volo.
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali