L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] y) e in una condizione iniziale y(x0)=y0 (in questa notazione, la lettera y può anche rappresentare una funzione vettoriale in uno spazio a p dimensioni; ciò permette di ricondurre alla stessa forma un sistema differenziale di p equazioni di ordine 1 ...
Leggi Tutto
onda
ónda [Der. del lat. unda] [LSF] Fenomeno fisico per cui una perturbazione prodotta localmente in un mezzo si propaga a distanza, trasportando lontano energia e informazioni circa le sue caratteristiche [...] f. ◆ [LSF] O. rotazionale: o. la cui grandezza sia vettoriale e con rotore diverso da zero, com'è, per es., un'o si possa definire la fase, è la superficie luogo dei punti dello spazio nei quali la fase dell'o. ha un determinato valore (superficie di ...
Leggi Tutto
Complessità
Antonio Lepschy
Il termine complessità è oggi parte integrante del linguaggio scientifico, in contesti diversi. In quello dell'informatica, dell'analisi numerica e dell'ottimizzazione esso [...] equazione [5] p non è una funzione del tempo; e infatti l'analisi è condotta valutando nello spazio dei parametri, ossia per ogni valore vettoriale di p, non tanto l'evoluzione nel tempo dello stato x quanto aspetti complessivi del comportamento del ...
Leggi Tutto
Convessità
Arrigo Cellina
La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] immagine di una misura vettoriale
Il seguente teorema sul codominio di una misura vettoriale fu pubblicato da nel 1947. Sia data una misura positiva μ su di una σ-algebra ∑ di uno spazio X. Un insieme E∈∑ è detto un atomo se μ(E) è positivo e ogni ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] interno di due unità diverse è zero. In questo modo Grassmann può dedurre le proprietà di ortogonalità negli spazivettoriali. Il prodotto interno di due grandezze estensive ha per grandezze dello stesso ordine m una forma particolarmente semplice ...
Leggi Tutto
potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] che è una funzione di punto a infiniti valori: v. sopra: P. di un campo vettoriale. ◆ [CHF] P. redox: v. pila chimica: IV 512 a. ◆ [MCQ] con il p. elettromagnetico, un quadrivettore Aμ=(V, A) nello spazio-tempo costituito da un p. scalare V e da un p ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Ennio De Giorgi
Carlo Sbordone
Ennio De Giorgi è stato uno dei più geniali matematici italiani del 20° secolo. Nel 1956, a soli ventotto anni, nell’articolo Sull’analiticità delle estremali degli integrali [...] giungere ad una definizione analitica della misura vettoriale, funzione additiva di insieme: questa fornisce la del 1955 (Nuovi teoremi relativi alle misure r−1 -dimensionali in uno spazio ad r dimensioni, «Ricerche matematiche», 1955, 4, pp. 95-113 ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Giuseppe Peano
Clara Silvia Roero
Negli ultimi decenni dell’Ottocento e nei primi del Novecento le ricerche matematiche, logiche e linguistiche di Giuseppe Peano ebbero una straordinaria eco internazionale. [...] in un elegante calcolo geometrico, in cui troviamo la prima definizione assiomatica di spazivettoriali, che comprendeva anche spazi di dimensione infinita. La trattazione di Peano forniva un’interpretazione geometrica concreta delle forme ...
Leggi Tutto
campo
campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] sotto il gruppo di Lorentz. ◆ [MCQ] C. stocastico: v. campi, teoria quantistica dei: I 479 c. ◆ [ALG] C. vettoriale: regione dello spazio in ciascun punto della quale è definito un vettore, che risulta quindi essere una funzione del posto e in ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico
Paolo Freguglia
Gert Schubring
Il calcolo geometrico
Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] numeri reali, i numeri complessi, i quaternioni a coefficienti reali sono gli unici corpi associativi che da un punto di vista additivo costituiscono spazivettoriali di dimensione finita rispettivamente 1, 2, 4 sui numeri reali.
Anche se il calcolo ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...