Complesso di 8 elementi o unità.
chimica Regola dell’o. Regola introdotta nella chimica da I. Langmuir e basata sulla teoria del legame di G.N. Lewis, secondo la quale quando due atomi si combinano per [...] wx=y.
L’importanza degli o. di Cayley è messa in luce dal teorema di Bott e Milnor (1958): se Vn è uno spaziovettoriale reale di dimensione n, in esso è possibile definire un prodotto che sia bilineare e privo di divisori dello zero solamente se n=1 ...
Leggi Tutto
Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] unario il calcolo dell’opposto d’un numero, una omografia vettoriale e una funzione di una variabile a un solo valore.
corpo. Un notevole risultato è il seguente: se A e B sono due spazi di Banach e ω è un o. lineare continuo da A in B univocamente ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] di Dirac pone in risalto il legame tra l'interpretazione probabilistica dell'ampiezza e la struttura di spaziovettoriale dello spazio degli stati di un sistema quantistico. La strategia che utilizzeremo nel seguito per mettere in evidenza le ...
Leggi Tutto
vettore
vettóre [agg. m. e s.m. (per il f. → vettrice) Der. del lat. vector -oris "conducente, portatore", dal part. pass. vectus di vehere "condurre, portare"] [ALG] Ente che permette di descrivere [...] : I 589 f. ◆ [CHF] Mappa dei v.: v. cristalli molecolari: II 37 c. ◆ [RGR] Norma di un v.: → vettoriale: Spaziovettoriale. ◆ [EMG] Potenziale magnetico v.: v. magnetostatica nel vuoto: III 604 e. ◆ [ALG] Prodotto scalare tra v.: v. sopra: [ALG ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] almeno un punto di accumulazione, anch'esso appartenente alla v. (→ compatto). ◆ [ALG] V. complessa: spazio topologico modellato localmente su Cn (lo spaziovettoriale delle n-ple di numeri complessi) anziché su Rn (numeri reali); tale nozione può ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] Sottospazio di H.: data una base B di uno spazio di H., è lo spaziovettoriale generato da un sottoinsieme B'ÌB di elementi della base. ◆ Spazio di H.: estensione dello spazio euclideo, e precis. uno spazio di Banach nel quale la norma di un elemento ...
Leggi Tutto
lineare
lineare [agg. Der. del lat. linearis, da linea] [LSF] Inerente a una linea, in partic : (a) che è costituito o è schematizzabile da una linea (per lo più retta) o che si sviluppa prevalentemente [...] dà luogo a una grandezza d'uscita direttamente proporzionale alla grandezza d'entrata. ◆ [ALG] Applicazione l.: omomorfismo tra due spazivettoriali, cioè funzione che conserva la somma di vettori e il prodotto fra un numero e un vettore (nel caso di ...
Leggi Tutto
composizione
composizióne [Der. del lat. compositio -onis, "atto, operazione del comporre, e anche il modo, gli elementi di essa e il suo risultato", dal part. pass. compositus di componere (→ composito)] [...] vettori. ◆ [ALG] C. esterna e interna: v. oltre: Legge di composizione. ◆ [ALG] C. vettoriale: (a) la somma componente per componente di due elementi di uno spaziovettoriale; (b) in partic., lo stesso che c. di vettori (v. sopra). ◆ [ALG] Legge di ...
Leggi Tutto
dimensione
dimensióne [Der. del lat. dimensio -onis "misura", dal part. pass. dimensus di dimetiri "misurare"] [MCQ] D. anomala: una d. operatoriale diversa da quella canonica di una data teoria. ◆ [MCC] [...] gruppo: v. gruppi classici: III 112 c. ◆ [ALG] D. di uno spaziovettoriale: il massimo numero di vettori linearmente indipendenti in quello spazio; così, una linea, una superficie e lo spazio ordinario hanno d., rispettiv., 1, 2, e 3. Questa nozione ...
Leggi Tutto
Banach Stefan
Banach 〈bànak〉 Stefan [STF] (Cracovia 1892 - Leopoli 1945) Prof. (1924) nell'univ. di Leopoli. ◆ [ALG] Algebra di B. (propr., algebra commutativa di B.): è un'algebra nella quale si sia [...] ◆ [ALG] Rappresentazione fedele, o riducibile, di un'algebra di B.: v. algebre di operatori: I 94 a. ◆ [ALG] Spazio di B.: spaziovettoriale che gode delle proprietà di essere normato e completo, cioè tale che ogni successione di Cauchy converge a un ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...