• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
30 risultati
Tutti i risultati [30]
Matematica [15]
Analisi matematica [7]
Algebra [5]
Temi generali [4]
Fisica [4]
Fisica matematica [4]
Storia della matematica [2]
Geometria [2]
Storia della fisica [2]
Fisica nucleare [1]

Krein Mark Grigorjevich

Dizionario delle Scienze Fisiche (1996)

Krein Mark Grigorjevich Krein 〈kràin〉 Mark Grigorjevich [STF] (n. 1907) ◆ [ANM] Teorema di K.-Milman: se K è un insieme convesso compatto contenuto in uno spazio vettoriale normato con x∈k punto estremale, [...] se x=(1-t)x₀+tx₁ con t∈(0,1) e x₀, x₁∈K implica x₀=x₁=x, allora K coincide con l'inviluppo convesso chiuso dei suoi punti estremali ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA

spazio

Enciclopedia on line

spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] retta paralleli). S. di Banach. È uno s. vettoriale normato, che sia anche completo nel senso che ogni successione P. In modo analogo sono definiti gli intorni di un sottoinsieme dello spazio. Per base di uno s. topologico S si intende una famiglia ... Leggi Tutto
CATEGORIA: CORPI CELESTI – COSMOLOGIA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOGRAFIA FISICA – GEOMETRIA – DISCIPLINE – DIRITTO COMUNITARIO E DIRITTO INTERNAZIONALE – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – POLITOLOGIA – TRASPORTI AEREI
TAGS: COMPLEMENTARE DI UN INSIEME – POSTULATO DELLE PARALLELE – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

spazio Lp(Ω)

Enciclopedia della Matematica (2013)

spazio Lp (O) spazio Lp(Ω) con Ω sottoinsieme misurabile di Rn, spazio vettoriale delle funzioni ƒ misurabili secondo Lebesgue per le quali l’integrale Se p ≥ 1, lo spazio è normato, con norma e completo [...] di → Banach. Se p ∈ (0, 1), lo spazio è ancora vettoriale, ma l’espressione precedente non rappresenta una norma, perché non è soddisfatta la disuguaglianza triangolare. Lo spazio L∞(Ω) costituito dalle funzioni essenzialmente limitate è di Banach ... Leggi Tutto
TAGS: DISUGUAGLIANZA TRIANGOLARE – INSIEME DI MISURA NULLA – FUNZIONI Ƒ MISURABILI – CLASSI DI EQUIVALENZA – SPAZIO DI → HILBERT

spazio topologico duale

Enciclopedia della Matematica (2013)

spazio topologico duale spazio topologico duale di uno spazio topologico X*, è lo spazio vettoriale completo X′ (talvolta denotato con X*) costituito dai funzionali lineari e continui su X*. Il valore [...] con il crochet <x′, x> oltre che con x′ (x). Se X* è uno spazio normato, X′ è uno spazio di Banach con la norma La topologia indotta da questa norma si chiama topologia forte di X′. La topologia debole di X′ invece è la topologia meno fine in ... Leggi Tutto
TAGS: DISUGUAGLIANZA DI → HÖLDER – SPAZI DI → HILBERT – FUNZIONALI LINEARI – SPAZIO VETTORIALE – MISURE DI → RADON

spazio l p

Enciclopedia della Matematica (2013)

spazio l p spazio l p spazio vettoriale delle successioni x = {ξk} per cui la serie è convergente. Se p ≥ 1, lo spazio è normato, con norma e completo in tale norma; è quindi uno spazio di → Banach. [...] Se p ∈ (0, 1), lo spazio è ancora vettoriale, ma non è normato. Lo spazio l ∞ costituito dalle successioni limitate è di Banach con norma Se 1 ≤ p ≤ q ≤ ∞, risulta l p ⊂ l q, con immersione continua. Se p e p′ soddisfano l’uguaglianza essi si ... Leggi Tutto
TAGS: SPAZIO DI → HILBERT – SPAZIO DI → BANACH – SPAZIO VETTORIALE – SUCCESSIONI – NORMA

normato

Dizionario delle Scienze Fisiche (1996)

normato normato [agg. Part. pass. di normare "dare una norma, rendere conforme a una norma"] [ALG] Spazio n.: spazio vettoriale che sia stato provvisto di una norma. ... Leggi Tutto
CATEGORIA: ALGEBRA

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] particolarizzano la collocazione tra tutti gli spazi vettoriali. Una proprietà addizionale che s' spazio propriamente euclideo si può definire la norma di un vettore v come ||v||=(v, v)1/2 (uno spazio v. propriamente euclideo è uno spazio normato ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] ∥ f ∥ = (f ∣ f)1/2 definisce una norma su H. Uno spazio vettoriale H su C così normato si dice ‛spazio di Hilbert' quando (H, ∥•∥) è completo (ossia è uno spazio di Banach). Si può mostrare che ‛ogni' spazio di Hilbert H è isometricamente isomorfo a ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] è l'integrale di f rispetto a μ. Si considerano le misure positive e la norma di una misura. Se E è uno spazio localmente compatto, K(E) indica lo spazio vettoriale delle funzioni numeriche continue in E, a supporto compatto; la misura (di Radon) μ è ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] di funzioni e gli spazi astratti con una struttura algebrica di spazio vettoriale lineare, ma di dimensione infinita e dotati di una struttura topologica basata sul concetto di spazio metrico nel quale sia definita una norma. I principali oggetti di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
nòrma
norma nòrma s. f. [dal lat. norma «squadra» (come strumento) e fig. «regola»]. – 1. In origine, con sign. non più in uso, strumento adoperato da tecnici e operai per tracciare misure e rapporti di linee e di angoli; squadra: fare a norma,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali