• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
14 risultati
Tutti i risultati [62]
Geometria [14]
Matematica [37]
Fisica [17]
Fisica matematica [12]
Algebra [13]
Analisi matematica [10]
Temi generali [8]
Meccanica dei fluidi [6]
Meccanica quantistica [6]
Storia della matematica [6]

struttura di spin

Enciclopedia della Scienza e della Tecnica (2008)

struttura di spin Luca Tomassini Un fibrato principale π∼:P∼→M su una varietà n-dimensionale M con gruppo di struttura Spinn che sia ottenuto come ricoprimento di un qualche fibrato principale π [...] π:P→M è ottenuto considerando l’azione di SOn su T*(M), il duale del fibrato tangente T(M) alla varietà M ossia lo spazio dei campi (regolari) di forme lineari sui campi vettoriali (regolari) di M. Similmente, si possono definire strutture di spin su ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA
TAGS: VARIETÀ RIEMANNIANA – COMPONENTE CONNESSA – DERIVATE COVARIANTI – VETTORI ORTONORMALI – FIBRATO VETTORIALE

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana Alberto Conte Ciro Ciliberto La scuola di geometria algebrica italiana Gli inizi: Luigi Cremona e [...] la dimensione hC(d), per ogni intero positivo d, dello spazio vettoriale dei polinomi omogenei di grado d che si annullano su C. , varietà le cui varietà di spazi secanti o tangenti oppure la cui 'varietà duale' hanno dimensione minore dell'ordinario. ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] toro M. La controparte algebrica di un fibrato vettoriale è lo spazio delle sezioni lisce C∞(X,E); in particolare L'algebra di Kreimer è commutativa; essa è l'algebra di Hopf duale dell'algebra inviluppo di un'algebra di Lie la cui base è indiciata ... Leggi Tutto
CATEGORIA: GEOMETRIA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] analitica V, consta di una famiglia F={Fp}p∈V di spazi vettoriali complessi di dimensione r, uno per ogni punto p∈V, che di grado d, la classe β non è altro che d[L]. Poiché la dualità di Poincaré dice che ∫L ωL=1, il contributo del primo addendo in [ ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] usando i metodi di Schönflies, che un campo vettoriale continuo su una 2-sfera ha sempre un punto a spazi che non sono necessariamente complessi finiti. Il teorema di dualità di Alexander per un complesso geometrico X di Sn afferma che: Lo spazio ... Leggi Tutto
CATEGORIA: GEOMETRIA
1 2
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali