La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] si annullano su C. L'anello delle coordinate affini A(C) della curva è il quoziente dell'anello k[x,y] per l'ideale I(C). Se due funzioni di A(C di oggetti (per es., la classe di tutti gli spazitopologici, o quella di tutti gli anelli) assieme a una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] che si può supporre di curvatura costante) è l'insieme quoziente del piano complesso, della sfera di Riemann o del spazio euclideo di dimensione maggiore. Una definizione più rigorosa si ottiene considerando una varietà come uno spaziotopologico ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] .
Supponiamo ora che l'insieme X sia esso stesso uno spaziotopologico; possiamo allora definire in ℬ(X) il sottospazio ℬ∞(X) di 0, ed è possibile scrivere (U−ζI)−1 come un quoziente di due tali determinanti infiniti. Si è così ricondotti alla ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] geometrico sono i generatori di un modulo libero, e il quoziente rispetto al nucleo dato dal modulo costituito dai bordi è sviluppato per riflettere le operazioni che sono possibili con gli spazitopologici. Per esempio, date due varietà M e N, si ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] una funzione continua f da Di a X. A ogni spaziotopologico X possiamo associare un complesso algebrico: il complesso delle un'algebra di cui sia noto un ideale e il relativo quoziente (stesso problema per i gruppi); vedremo un'esempio nel caso ...
Leggi Tutto
limite
lìmite [Der del lat. limes -mitis] [LSF] Confine, termine, elemento di separazione; si specializza, in senso astratto, come il confine ideale al di sopra o al di sotto del quale si verifica un [...] l. nella topologia, sia quando si consideri una corrispondenza (o funzione) tra due spazitopologici, sia quando di un prodotto nel prodotto dei l., del l. di un quoziente nel quoziente dei l., in quest'ultimo caso con la condizione che la funzione ...
Leggi Tutto
Modelli, Teoria dei
Silvio Bozzi
Malgrado le modeste origini che ne hanno segnato la nascita, la teoria dei modelli ha sviluppato nel corso del tempo idee e metodi che l'hanno resa uno dei settori più [...] dei clopen (insiemi simultaneamente aperti e chiusi) dello spaziotopologico EC+ i cui chiusi sono le classi elementari un'estensione finita dei razionali, allora rimarrà tale in ogni quoziente M/J, per tutti salvo un numero finito di ideali ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] di Suslin, che, dal 1920, chiedeva se ogni spaziotopologico connesso e con la condizione della catena numerabile fosse isomorfo vero modello a due valori si ottiene con un opportuno quoziente, rispetto a un ultrafiltro generico.
Con la tecnica del ...
Leggi Tutto
applicazione
applicazióne [Der. del lat. applicatio -onis "atto ed effetto dell'applicare", dal part. pass. applicatus di applicare: (→ applicabile)] [ALG] Si dice che f è un'a. di un insieme P in un [...] : I 96 a. ◆ [ALG] A. continua: a. di uno spaziotopologico A in un altro A' che fa corrispondere a punti "vicini" di A A. momento: v. moto, costanti del: IV 124 f. ◆ [ALG] A. quoziente: v. invarianti, teoria degli: III 284 e. ◆ [ALG] A. r-equivalente: ...
Leggi Tutto
In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] varie direzioni, soprattutto sostituendo allo spazio ambiente euclideo uno spazio metrico o topologico.
I. di Stieltjes. - polinomio). Anche l’i. di una funzione razionale fratta (quoziente di polinomi) si può esprimere mediante un numero finito di ...
Leggi Tutto
quoziente
quoziènte s. m. [dal lat. quotiens avv. «quante volte», der. di quot «quanti»]. – 1. In aritmetica, il risultato dell’operazione della divisione, e cioè il numero che esprime quante volte il divisore è contenuto nel dividendo: q....