L'Universo matematico
John D. Barrow
(Astronomy Centre, University of Sussex, Brighton, Gran Bretagna)
Parte di questo saggio è stata pubblicata sotto il titolo Perché il mondo è matematico? Roma-Bari, [...] esistono indipendentemente dal pensiero. Per gli idealisti la conoscenza è il prodotto di un processo di scoperta. Entrambi questi punti di vista sono intelligenze extraterrestri, i quali mandano nello spazio informazioni sulla scienza umana e sulla ...
Leggi Tutto
Scienza greco-romana. La geometria da Apollonio a Eutocio
Reviel Netz
La geometria da Apollonio a Eutocio
Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] nel Mediterraneo orientale, poco di qualitativamente nuovo fu prodotto, anche se numerose opere, spesso di alto livello
Ci siamo soffermati su alcune opere isolate, nel tempo e nello spazio ma anche nel contenuto, e il cui solo contesto comune era ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] per mezzo della ∥T∥1 : = Sp(√T *T) = Σα ((T *T)1/2 eα∣eα), una norma per la quale lo spazio T (H) è completo. Poiché il prodotto di un qualsivoglia operatore limitato per un operatore con traccia è ancora tale, si definisce, per ogni T in T (H), una ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La sintesi newtoniana
Maurizio Mamiani
La sintesi newtoniana
Le opere maggiori di Newton
Isaac Newton rese pubbliche due sole opere, destinate [...] definizione VII, e dunque la forza motrice è data dal prodotto dell'accelerazione per la massa
[3] Fm=a×m
cose sono situate nel tempo rispetto all'ordine di successione, nello spazio rispetto all'ordine della posizione. è proprio della loro essenza ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] contenute nella tab. 1.
Qui nPk=n(n−1)∙∙∙(n−k+1) (il prodotto di k fattori a partire da n, ciascuno inferiore di uno a quello che lo comune nei suoi lavori, che sono così diversi e che spaziano in così tanti campi della matematica. Egli rispose di ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] σ∈(1/2;1], t→+∞, e di vettori analoghi in uno spazio complesso N-dimensionale (Voronin 1988).
Molti collegamenti fra ζ(s) di un numero primo, μ(n)=(−1)ν se n è uguale al prodotto di ν numeri primi distinti), mentre Noam D. Elkies confutò l'ipotesi di ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] Un ‛osservabile' E è un operatore hermitiano in uno spazio di Hilbert di funzioni d'onda. Che gli operatori hermitiani
CS = A dA + (2/3)A A A,
dove il prodotto è il prodotto esterno di forme differenziali. Invece che essere esteso a tutti i cammini, ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] assi.
La Géométrie cartesiana, invece, dedica molto spazio (specialmente nei Libri I e III) alla uniscono i punti A e C e si traccia DE parallela a CA; allora BE è il prodotto di BD per BC. Per dividere BE per BD, si uniscono E e D e si traccia ...
Leggi Tutto
Mortalità
Graziella Caselli
Introduzione
Era più o meno la metà del Seicento quando la città di Londra, volendo conoscere l'andamento delle epidemie che affliggevano la popolazione, invitò John Graunt [...] . Nell'analisi che viene presentata uno spazio importante è pertanto dedicato all'evoluzione e , rispettivamente. L'età mediana alla morte - quella in cui si è già prodotta la metà dei decessi di una generazione - è passata nello stesso periodo da ...
Leggi Tutto
Scienza greco-romana. La matematica nel V secolo
Reviel Netz
La matematica nel V secolo
Il titolo di questo capitolo è di per sé problematico. Decidere se al di là di alcuni lavori isolati si possa [...] matematici senza mai scrivere nulla, ma in questo caso la scienza prodotta rischia di essere modificata dal modo in cui è trasmessa, ed di problemi di fondamenti a proposito della struttura dello spazio. Scrivendo nel IV sec., quando la matematica ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...