• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
il chiasmo
lingua italiana
102 risultati
Tutti i risultati [1981]
Analisi matematica [102]
Matematica [296]
Fisica [289]
Arti visive [234]
Temi generali [202]
Biografie [145]
Biologia [143]
Archeologia [129]
Fisica matematica [120]
Medicina [119]

Hilbert, David

Dizionario delle Scienze Fisiche (1996)

Hilbert, David Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆  Azione di H.-Einstein: v. gravità [...] con i=1,2,...; è il prototipo di insieme compatto in uno spazio infinitodimensionale. ◆ Disuguaglianza di H.: è Σm,n=m,n=0  loro volta, queste funzioni devono verificare un’equazione lineare affinché l’equazione del secondo ordine sia risolubile. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONE DI BOLTZMANN – MECCANICA DEI FLUIDI – GEOMETRIA EUCLIDEA – SPAZIO VETTORIALE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su Hilbert, David (6)
Mostra Tutti

rotazione

Dizionario delle Scienze Fisiche (1996)

rotazione rotazióne [Der. del lat. rotatio -onis "atto ed effetto del rotare", dal part. pass. rotatus di rotare "ruotare", che è da rota "ruota"] [LSF] (a) Un intero giro compiuto da un corpo intorno [...] è individuata da un unico parametro φ, detto angolo di r.; nello spazio R3 una r. propria lascia immutati i punti di una retta, detta quindi ha luogo nella parte finale, fortemente non lineare, della curva di magnetizzazione, verso la saturazione: ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METROLOGIA – OTTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su rotazione (4)
Mostra Tutti

elemento

Dizionario delle Scienze Fisiche (1996)

elemento elemènto [Dal lat. elementum, di origine incerta] [LSF] Lo stesso che infinitesimo, cioè quantità di cui si possa trascurare, per enti geometrici, la parte non lineare (e. d'arco, di superficie, [...] ₀)]/(x-x₀)n=c, con c€0 costante finita. ◆ [MCS] E. di quantizzazione: è, per una particella quantistica, una regione del suo spazio delle fasi di volume h3, dove h è la costante di Planck: v. statistiche quantistiche: V 603 b. ◆ [FSD] E. di simmetria ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su elemento (5)
Mostra Tutti

assoluto

Dizionario delle Scienze Fisiche (1996)

assoluto assoluto [agg. e s.m. Der. del part. pass. absolutus del lat. absolvere, comp. di ab- e solvere "sciogliere", e quindi "libero da limitazioni o condizioni"] [CHF] Qualifica di composti liquidi [...] sfere, o anche il luogo dei punti ciclici dei piani nello spazio. ◆ [ALG] Invariante a.: di una forma algebrica, è della forma che si riproduca inalterata quando si operi una sostituzione lineare sulle variabili. ◆ [ANM] Massimo (rispettiv. minimo) a ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METROLOGIA – OTTICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su assoluto (3)
Mostra Tutti

modulo

Enciclopedia della Scienza e della Tecnica (2008)

modulo Luca Tomassini Gruppo abeliano (in cui l’operazione di moltiplicazione è commutativa) unito a un anello di operatori. Un modulo è la generalizzazione di uno spazio vettoriale (lineare) su un [...] volte) per a negativo. Come precedentemente accennato, se A è un campo la nozione di modulo coincide con quella di spazio vettoriale. Anche uno spazio vettoriale V su un campo K (fissata una base) può essere considerato un modulo sull’anello Mν(K) di ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su modulo (3)
Mostra Tutti

trasformata di Fourier

Enciclopedia della Scienza e della Tecnica (2008)

trasformata di Fourier Luca Tomassini Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] , ma inoltre ∣∣f∼(p)∣∣2=∣∣f(x)∣∣2: la trasformata di Fourier definisce un operatore lineare isometrico (e dunque sempre invertibile) dello spazio di Hilbert L2(ℝn,ℂ) delle funzioni a quadrato sommabile in sé. Dalla definizione è immediato verificare ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – OPERATORE LINEARE CONTINUO – EQUAZIONI DIFFERENZIALI – FUNZIONI GENERALIZZATE – EQUAZIONI ALGEBRICHE
Mostra altri risultati Nascondi altri risultati su trasformata di Fourier (1)
Mostra Tutti

operatori compatti

Enciclopedia della Scienza e della Tecnica (2008)

operatori compatti Luca Tomassini Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] limitato in un insieme la cui chiusura nella topologia indotta dal prodotto scalare è compatta. In uno spazio di Hilbert a dimensione finita ogni operatore lineare è compatto, poiché trasforma ogni insieme limitato in uno limitato e in un tale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE COMPATTO – OPERATORE IDENTITÀ – ANALISI MATEMATICA – SPAZIO DI HILBERT – OPERATORE LINEARE

traccia

Enciclopedia della Scienza e della Tecnica (2008)

traccia Luca Tomassini Nel caso di un operatore lineare (matrice quadrata) di uno spazio vettoriale euclideo n-dimensionale in sé A=∣∣aij∣∣ (con aij numeri complessi e i,j=1,...,n), la traccia di A [...] limitati su di essi B(ℋ). Un primo metodo procede direttamente dalla definizione precedente. Se A è un operatore hermitiano su uno spazio di Hilbert ℋ con spettro discreto e autovalori λi (per es., un operatore compatto) si dirà traccia di A la somma ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE EUCLIDEO – OPERATORE HERMITIANO – SPAZIO DI HILBERT – OPERATORE LINEARE – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su traccia (4)
Mostra Tutti

generatore di un semigruppo

Enciclopedia della Scienza e della Tecnica (2008)

generatore di un semigruppo Luca Tomassini Siano X uno spazio di Banach con norma ∣∣∙∣∣ e B(X) l’insieme degli operatori continui su di esso. Si dice semigruppo di operatori {T(t)∣t≥0} una famiglia [...] Notiamo che quest’ultima ha senso anche nel caso A non sia lineare. La disuguaglianza [2] è soddisfatta se vale la condizione di Hille può essere generalizzato da un lato al caso di spazi vettoriali topologici e dall’altro a quello di operatori non ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZI VETTORIALI TOPOLOGICI – OPERATORI CONTINUI – OPERATORE LINEARE – SPAZIO DI BANACH – SPAZI VETTORIALI

misura di Wiener

Enciclopedia della Scienza e della Tecnica (2008)

misura di Wiener Luca Tomassini Una misura di probabilità sullo spazio C([0,1],ℝ) delle funzioni continue a valori reali sull’intervallo chiuso [0,1] definita come segue. Siano 0⟨t1⟨...⟨tν≤1 punti arbitrari [...] ;A1,...,Aν). Sia ora F:C([0,1],ℝ)→ℝ un funzionale lineare a valori reali misurabile (nel senso di Lebesgue) rispetto alla primo esempio di estensione della teoria dell’integrazione a spazi di dimensione infinita e furono introdotti da Norbert Wiener ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: TEORIA DELL’INTEGRAZIONE – DENSITÀ DI PROBABILITÀ – MISURA DI LEBESGUE – FUNZIONALE LINEARE – FUNZIONI CONTINUE
1 2 3 4 5 6 7 8 ... 11
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
lineare¹
lineare1 lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali