• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
64 risultati
Tutti i risultati [216]
Matematica [64]
Fisica [28]
Temi generali [25]
Algebra [21]
Geometria [18]
Fisica matematica [16]
Diritto [18]
Analisi matematica [16]
Economia [14]
Scienze demo-etno-antropologiche [13]

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] le distribuzioni temperate Schwartz definì una trasformata di Fourier che porta in La classe è definita anch'essa come lo spazio duale di una più ampia classe di funzioni test C∞: Con la classe si può utilizzare il fatto molto importante ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] definiti su X sarà denotato con X′; un suo elemento generalmente con x′. Lo spazio X′ è detto 'coniugato' di X o spazio duale di X. Il concetto di spazio duale venne introdotto esplicitamente per la prima volta per il caso astratto nel 1927 da Hans ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Convessità

Enciclopedia della Scienza e della Tecnica (2007)

Convessità Arrigo Cellina La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] x−x0〉 ≥ 0, per ogni x∈K. Nell'ambito delle disuguaglianze variazionali, viene data direttamente una mappa A a valori nello spazio duale di X, l'analoga della mappa ∇ϕ, definita su un sottoinsieme K. Il problema che ci si pone, in generale, è quello ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – FUNZIONI A QUADRATO SOMMABILE – SPAZIO LOCALMENTE CONVESSO – CALCOLO DELLE VARIAZIONI – FUNZIONE DIFFERENZIABILE

La grande scienza. Cronologia scientifica: 1941-1950

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1941-1950 1941-1950 1941 Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] nel suo importante articolo On conjugate convex functions introduce la mappa duale: se f è un'applicazione da uno spazio vettoriale X in ℝ, e X* è lo spazio duale di X, allora la mappa duale f * : X* → ℝ si definisce come f * (x*)=supx∈X[〈 x; x ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] che le forme lineari definite in V, e a valori in K, cioè le funzioni f:V→K tali che f(klvl+k₂v₂)=klf(vl)+ k₂f(v₂), formano a loro volta uno spazio v. V∗, detto lo spazio duale di V; se V ha dimensione finita n anche V∗ ha la stessa dimensione n. Uno ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

base

Dizionario delle Scienze Fisiche (1996)

base base [Der. del lat. basis, dal gr. básis, "parte inferiore di una costruzione"] [ALG] Lato sul quale appoggia o s'immagina appoggiato un poligono, e, per un solido, il poligono o il cerchio su cui [...] 1, ..., 9), mentre nel sistema binario la b. è 2 e i simboli sono 0 e 1. ◆ [ALG] B. duale: b. dello spazio duale di uno spazio vettoriale: v. gruppi, rappresentazione dei: III 121 a. ◆ [GFS] B. geodetica: è il lato di una triangolazione geodetica di ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su base (1)
Mostra Tutti

teorema di Mazur

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Mazur Arrigo Cellina Proposizione secondo la quale uno spazio normato, un insieme che sia convesso e chiuso è anche chiuso rispetto alla topologia debole. Nella topologia debole si hanno [...] X. Diciamo che una successione (xn) converge debolmente a x* se per ogni x′ nello spazio duale X′ si ha che x′(xn)→x′(x*). Il teorema di Mazur afferma che se X è uno spazio di Banach e (xn) una successione di elementi di X che converge debolmente a x ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

preduale

Dizionario delle Scienze Fisiche (1996)

preduale preduale [agg. Comp. di pre- e duale] [ALG] Spazio tale che la sua chiusura diviene lo spazio duale di un altro: v. algebre di operatori: I 97 f. ... Leggi Tutto
CATEGORIA: ALGEBRA

spazio

Enciclopedia on line

spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] . In modo analogo sono definiti gli intorni di un sottoinsieme dello spazio. Per base di uno s. topologico S si intende una famiglia v2), formano a loro volta uno s. vettoriale V* detto lo s. duale di V; se V ha dimensione finita n, anche V* ha la ... Leggi Tutto
CATEGORIA: CORPI CELESTI – COSMOLOGIA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOGRAFIA FISICA – GEOMETRIA – DISCIPLINE – DIRITTO COMUNITARIO E DIRITTO INTERNAZIONALE – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – POLITOLOGIA – TRASPORTI AEREI
TAGS: COMPLEMENTARE DI UN INSIEME – POSTULATO DELLE PARALLELE – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

duale

Dizionario delle Scienze Fisiche (1996)

duale duale [agg. e s.m. Der. del lat. dualis, da duo "due"] [LSF] Di ente che sia in relazione di dualità (←) con un altro. ◆ [ANM] D. di un gruppo abeliano: v. algebre di operatori: I 94 d. ◆ [ALG] [...] d.: v. fibrati: II 571 a. ◆ [ALG] Rappresentazione d. di un gruppo: v. gruppi, rappresentazione dei: III 122 b. ◆ [ALG] Spazio d.: di uno spazio vettoriale V, è l'insieme dei funzionali lineari su V. ◆ [ALG] Tensore d.: v. tensore: VI 128 d. ◆ [FSN ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA NUCLEARE – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA
1 2 3 4 5 6 7
Vocabolario
nucleare
nucleare agg. [der. di nucleo]. – Del nucleo, relativo al nucleo, che costituisce un nucleo. Ha sign. specifici e ben determinati in alcune discipline: 1. a. In biologia, relativo o appartenente al nucleo della cellula: la struttura n.; membrana...
coomologìa
coomologia coomologìa s. f. [comp. di co-2 e omologia]. – In matematica, teoria della c., duale della teoria topologica dell’omologia, che descrive talune proprietà degli spazî topologici e che attualmente ha sviluppato caratteristiche puramente...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali