La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo
David E. Rowe
I problemi di Hilbert e la matematica del nuovo secolo
Problemi matematici [...] le geometrie che si possono ottenere assumendo la libera mobilità dei corpi rigidi nello spazio (il cosiddetto problema diRiemann-Helmholtz). Lie assumeva che le funzioni che descrivono le trasformazioni fossero differenziabili, condizione che ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria
Umberto Bottazzini
I fondamenti della geometria
Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] geometria non archimedea. Stabilite le proprietà della retta, del piano (euclideo, diRiemann e di Lobačevskij), dello spazio euclideo, Veronese considera poi gli spazi a n-dimensioni.
La loro costruzione si fonda su una concezione 'genetica': "Dato ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica
Paolo Zellini
L'analisi numerica
L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] seguito alle ricerche di Augustin-Louis Cauchy, Georg Friedrich Bernhard Riemann, Karl Theodor Gx0∥.
Il teorema di contrazione vale in un qualsiasi spaziodi Banach (metrico e completo) e può quindi essere usato in una varietà di casi che comprende, ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] Ricci e del suo allievo Tullio Levi Civita sui "Mathematische Annalen". L'attenzione diRiemann si era focalizzata principalmente sugli spazi a curvatura costante, gli unici che consentissero la libera mobilità dei corpi rigidi e le sue idee furono ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I luoghi e le istituzioni
Umberto Bottazzini
I luoghi e le istituzioni
Nei decenni che separano l'ultimo quarto del XIX sec. dalla Seconda guerra [...] geometra e si considera l'erede della grande tradizione di Gottinga, di Carl Friedrich Gauss, diRiemann e dello stesso Clebsch. A Gottinga i rapporti della 'scuola polacca' di logica e matematica dura tuttavia lo spaziodi un ventennio e si conclude ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'intuizionismo di Brouwer
Anne L. Troelstra
L'intuizionismo di Brouwer
Nella dissertazione Over de Grondslagen der Wiskunde (I fondamenti della [...] )} dove F è una asserzione matematica ancora non dimostrata, come l'ipotesi diRiemann. X è un sottoinsieme dell'insieme finito {1, 2}, ma non teoria della misura, la teoria degli spazidi Hilbert, l'integrale di Radon e la geometria affine. Dopo il ...
Leggi Tutto
GENOCCHI, Angelo
Livia Giacardi
Nacque a Piacenza il 5 marzo 1817 da Carlo, agiato possidente, e da Carolina Locatelli. Fin da giovanissimo il G. si distinse negli studi, in particolar modo in quelli [...] quali è quella relativa all'esistenza o meno di una superficie dello spazio euclideo rappresentante l'intera varietà analitica ∞2 scia diRiemann e il G. incapace di svincolarsi del tutto dalle concezioni geometriche del passato e quindi di cogliere ...
Leggi Tutto
LEVI, Beppo
Salvatore Coen
Nacque a Torino il 14 maggio 1875 da Giulio Giacomo e Sara Diamantina (Mentina) Pugliese. Presso l'Università di Torino compì i suoi studi fino al conseguimento della laurea [...] di nuove idee e di nuovi metodi: gli "spazidi Beppo Levi" saranno introdotti in memoria di uno spaziodi integrale, motivandola con la possibilità di illustrarne una introduzione non dissimile da quella ordinaria per l'integrale diRiemann ...
Leggi Tutto
FUBINI (Fubini Ghiron), Guido
Marta Menghini
(Fubini Ghiron), Nacque a Venezia il 19 genn. 1879 da Lazzaro e da Zoraide Torre. Compì i suoi studi presso la Scuola normale superiore di Pisa, dove ebbe [...] con particolare riferimento al problema diRiemann-Helmholtz, relativo alla caratterizzazione 99-117) di una superficie nello spazio a tre dimensioni o di una ipersuperficie nello spazio a più dimensioni come quoziente di due forme differenziali ...
Leggi Tutto
PINCHERLE, Salvatore
Enrico Rogora
PINCHERLE, Salvatore. – Nacque a Trieste l’11 marzo 1853 da Mosè ed Evelina Dörfles.
Di famiglia ebraica frequentò le scuole medie e il liceo Imperiale a Marsiglia, [...] di ampliarne il campo di definizione in virtù di un principio di ‘permanenza’. Definì la nozione di iperpiano di uno spazio funzionale e la nozione di operazione ‘aggiunta’. Cercò anche di estendere molti concetti geometrici validi per gli spazidi ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...