La seconda rivoluzione scientifica: matematica e logica. La probabilita
Eugenio Regazzini
La probabilità
Evoluzione della nozione di probabilità
La grande difficoltà in cui si dibattevano i cultori [...] moderna dei processi aleatori.
Il teorema d'estensione di Carathéodory, relativo a una misura di probabilità definita su un'algebra di eventi, suggerisce l'introduzione della nozione di 'spaziodi probabilità di Kolmogorov' (Ω‚ℋ,P), in cui Ω è lo ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello dispazio-tempo, allora la teoria generale [...] di adeli, che è uno spazio geometrico naturale con un'azione del gruppo di scaling che fornisce un'interpretazione spettrale degli zeri delle L-funzioni della teoria dei numeri e un'interpretazione delle formule esplicite diRiemann come formule di ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] realtà che si deve attribuire alle proposizioni della geometria di Nikolaj Ivanovič Lobačevskij? O alle speculazioni di Hermann Ernst Grassmann o di Georg Friedrich Bernhardt Riemann sugli spazi a n-dimensioni? Sono semplicemente finzioni matematiche ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] per l'influenza che esercitarono tanto lui quanto i suoi studenti, fra i quali Kirchhoff e Riemann. Dirichlet tratta la nozione di potenziale nello spazio, l'esistenza e la continuità delle sue derivate e il fatto che esso soddisfa l'equazione ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] funzione zeta diRiemann sulla retta critica. I punti interi possono essere trattati come punti di una 'griglia'. Questo tipo di trattazione è confluito nella 'geometria dei numeri'; le sue problematiche sono legate alla suddivisione dello spazio in ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] con Mg,n e prende il nome di 'spazio dei moduli delle curve n-puntate di genere g'. I punti di questo spazio sono le classi di isomorfismo di superfici n-puntate (C; p1,…,pn) dove C è una superficie diRiemanndi genere g e i pi sono punti ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] e, in particolare, gli spazi normati. Si introduce lo spaziodi Montel; segue lo studio del duale di uno spaziodi Fréchet e anche quello di morfismi specifici di tali spazi. Diversi criteri di compattezza sono esplicitati.
Il quinto capitolo ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] in uno spaziodi Banach. Il cap. 5, infine, riassume i teoremi di convergenza, i quali mostrano precisamente come la teoria di Lebesgue riesca a evitare gli aspetti insoddisfacenti della teoria diRiemann, quando si considerino integrali di limiti.
L ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] usato in aree della matematica di grande rilievo, come per esempio l'analisi diRiemann delle funzioni abeliane.
In funzioni inverse, che afferma che se F applica un intorno U di u0∈X in Y, dove X e Y sono spazidi Banach e F è C1 su U con L=F'(u0) ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] a f(s) su [a,b]. Ci sono molti altri esempi dispazidi funzioni.
In un certo senso, il ramo dell'analisi classica chiamato di esistenza di Hodge degli integrali armonici su una varietà diRiemanndi dimensione n; teorema splendido in sé e gravido di ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...