Simmetrie e invarianze
LLuigi A. Radicati di Brozolo
di Luigi A. Radicati di Brozolo
SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] tutta la fisica precedente, cioè l'indipendenza della geometria dello spazio-tempo dai fenomeni fisici che in esso avvengono. Già sessant'anni prima, Riemann, nella sua famosa tesi di abilitazione Über die Hypothesen, welche der Geometrie zu Grunde ...
Leggi Tutto
L'Ottocento: matematica. Elasticita e idrodinamica
Gleb Mikhailov
Elasticità e idrodinamica
Il XIX sec. rappresenta per la storia della meccanica dei continui un periodo particolarmente importante, [...] che nello stesso anno scoprì l'esistenza di due famiglie di curve (invarianti diRiemann) e impiegò condizioni di conservazione della massa e della quantità di moto su una discontinuità. Tuttavia Riemann commise un errore accettando la dipendenza ...
Leggi Tutto
Superconduttività
Julien Bok e Pierre-Gilles de Gennes
SOMMARIO: 1. Le prove sperimentali della superconduttività. 2. L'origine della superconduttività. 3. I metalli superconduttori tradizionali. [...] a
dove ζ (x) è la funzione zeta diRiemann. La discontinuità di Cv a Tc è misurata in vari materiali di tipo s che sono isotrope (tali cioè che la probabilità di presenza non dipende dalla direzione dello spazio), come anche funzioni d'onda di ...
Leggi Tutto
La seconda rivoluzione scientifica: fisica e chimica. Relativita e gravitazione
Clive W. Kilmister
Relatività e gravitazione
Problemi relativi alla gravitazione newtoniana
Il successo della teoria [...] di Gauss a un numero qualsiasi di dimensioni, dove la generalizzazione della R di Gauss era una matrice Rijkl, il tensore diRiemann dalla distribuzione della materia; non vi è uno spaziodi 'background' rispetto al quale la materia possa essere ...
Leggi Tutto
numero
nùmero [Der. del lat. numerus] [LSF] Oltre che nei vari signif. propri della matematica, alcuni dei quali sono ricordati oltre, il termine è usato in varie discipline fisiche anche come sinon. [...] proprietà di analiticità della funzione zeta diRiemann. La stessa ipotesi diRiemann (assenza di zeri non banali della funzione zeta diRiemann, R ha una struttura dispazio topologico. ◆ [ALG] N. relativo: n. reale dotato di segno, positivo con il ...
Leggi Tutto
geometria
geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] quadratica ds2 è a sua volta il punto di partenza diRiemann per introdurre e studiare una metrica in una varietà qualsiasi, anche a più dimensioni e anche non immersa in uno spazio euclideo. Gli sviluppi più elevati dell'impostazione della ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] coordinate grassmanniane. ◆ [MCC] V. integrale: v. meccanica analitica: III 653 e. ◆ [ALG] V. jacobiana: v. Riemann, superfici di: V 6 a. ◆ [ANM] V. lineare: è un sottoinsieme di uno spazio lineare V della forma x₀+L, dove x₀ è un generico elemento ...
Leggi Tutto
Christoffel Elwin Bruno
Christoffel 〈krìstofël〉 Elwin Bruno [STF] (Montjoie, Renania, 1829 - Strasburgo 1900) Prof. di analisi algebrica e infinitesimale nelle univ. di Zurigo (1862), Berlino (1869), [...] formule di quadratura approssimata. ◆ [ANM] Simboli di C.: coefficienti che intervengono nella definizione di derivata covariante, tramite la quale si definisce il differenziale in uno spazio curvo: v. tensore: VI 124 d. ◆ [ANM] Tensore diRiemann-C ...
Leggi Tutto
UNITARIE, TEORIE RELATIVISTICHE
Bruno FINZI
Il concetto di campo costituisce, per dirla con A. Einstein, "il maggior successo dell'uomo nella scienza". Esso permette dì rappresentare con continuità [...] emisimmetrica
Al campo fondamentale s'impone, come negli spazîdiRiemann: di dare la metrica [1]; di fungere da costante nella derivazione tensoriale; di mantenere costante anche il tensore di Ricci con esso costruito. Precisamente:
La seconda e ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] con parte reale 1/2 (che soddisfano cioè la congettura formulata da Riemann nel 1859) ha cardinalità che cresce con lo stesso ordine di N(T).
Il primo atto della conquista dello spazio: lanciato il progenitore dei missili V2. Il 3 ottobre l'ingegnere ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...