L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] che esso interviene nella formulazione del diciottesimo problema diHilbert, nel quale ci si domanda se sia vero che in uno spazio euclideo, di dimensione qualsiasi, esiste solo un numero finito di gruppi cristallografici. Il problema è stato risolto ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] ogni spaziodi dimensione pari, qualsiasi processo di dualità è associato a una conica, mentre in uno spaziodi David Hilbert (1862-1943) si schierò in difesa di quella impostazione, seguito poi da un altro brillante matematico di Gottinga, ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] forme e anche la loro riduzione venivano interpretate, in vario modo, nel piano o nello spazio. Il processo di 'aritmetizzazione', raccomandato da Hilbert in nome del rigore, non escludeva una 'geometrizzazione' che favorisse anche l'Anschauung, la ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] una grande portata unitaria per l'intera matematica. La tesi di Lebesgue, i lavori diHilbert sulle equazioni integrali lineari e la tesi (1906) di Maurice-René Fréchet (1878-1973) sugli spazi metrici sono i catalizzatori del rapido processo che, in ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] Kontinuum (Il continuo). Matematico della scuola diHilbert, Weyl coltivò anche un durevole interesse di numeri reali, e della geometria euclidea dello spazio, nel sistema delle coordinate di numeri reali a tre dimensioni.
La richiesta diHilbertdi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] tecniche della teoria delle distribuzioni è la teoria dei funzionali analitici di Sato e della sua scuola e altre teorie di iperfunzioni a essa collegate.
Metodi negli spazidiHilbert
Uno dei grandi progressi degli anni Trenta del Novecento è stato ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] Lie
In una memoria sul problema dello spazio (1922) Weyl passa in rassegna i vari modi in cui esso era stato trattato in precedenza. Prima c'erano gli assiomi di Euclide e quelli diHilbert, ora c'è la descrizione cartesiana (come la chiama lo stesso ...
Leggi Tutto
L'Ottocento: matematica. La geometria non euclidea
Rossana Tazzioli
La geometria non euclidea
Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] David Hilbert (1862-1943) dimostrò rigorosamente che il modello di Beltrami è valido solo localmente.
A un attento studio della memoria di Riemann era ispirato un secondo lavoro di Beltrami, la Teoria fondamentale degli spaziidi curvatura costante ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] la corrispondente superficie di Riemann era localmente uguale a una porzione dispazio non euclideo bidimensionale. suggerissero percorsi alternativi.
Il corso diHilbert è uno dei primi a offrire qualcosa di simile all'attuale consenso in materia ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie
Jean Mawhin
Equazioni differenziali ordinarie
Accanto a sostanziali progressi nella teoria delle equazioni [...] (1899-1943) generalizza il teorema di Birkhoff-Kellogg alle applicazioni compatte di un convesso chiuso e limitato di uno spaziodi Banach in sé e alle applicazioni continue di un compatto convesso di un tale spazio in sé. La sua sola applicazione ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...