Simmetrie e invarianze
LLuigi A. Radicati di Brozolo
di Luigi A. Radicati di Brozolo
SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] (v. quanti, teoria dei: Meccanica quantistica), l'insieme ℋ degli stati di un sistema quantistico, detto spazio degli stati, ha la struttura di uno spaziodiHilbert complesso, e le grandezze osservabili, come l'energia, il momento angolare ecc ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La probabilita
Eugenio Regazzini
La probabilità
Evoluzione della nozione di probabilità
La grande difficoltà in cui si dibattevano i cultori [...] dei numeri aleatori, con momento secondo finito e speranza matematica nulla, costituisce uno spaziodiHilbert quando il prodotto interno di due punti sia definito come covarianza dei corrispondenti numeri aleatori. Uno degli obiettivi principali ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello dispazio-tempo, allora la teoria generale [...] , la K-omologia ammette una definizione piuttosto semplice in termini dispazidiHilbert e di rappresentazioni di Fredholm di algebre, così com'è gradualmente emerso dai lavori di Michael Francis Atiyah, I. Singer, Lawrence G. Brown, Richard G ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazidi dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] x∣ = ∣x∣2. Allora A è isomorfa a una sottoalgebra chiusa di ℒ (H) per un appropriato spaziodiHilbert H. Se T è un operatore normale su di uno spaziodiHilbert H, l'algebra di operatori da esso generata è commutativa e, in base al teorema spettrale ...
Leggi Tutto
Elettrodinamica quantistica
EEmilio Picasso
SOMMARIO: 1. Introduzione. 2. Interpretazione grafica di alcuni processi elettrodinamici. 3 Verifiche sperimentali dell'elettrodinamica: generalità. 4. [...] generare lo stato in cui è creata una particella, lo stato in cui sono create due particelle e così via, di modo che lo spazio (diHilbert) che si costruisce è molto simile, alla fine, al nostro universo.
La teoria dei campi, e in particolare la QED ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] e per cui Eψk = Ekψk. Un ‛osservabile' E è un operatore hermitiano in uno spaziodiHilbertdi funzioni d'onda. Che gli operatori hermitiani abbiano autovalori reali è in accordo con il fatto che tali autovalori possono essere interpretati ...
Leggi Tutto
Irreversibilità
JJoel L. Lebowitz
Sommario: 1. Introduzione: a) considerazioni qualitative; b) considerazioni quantitative; c) teoria microscopica. 2. Il problema dell'irreversibilità macroscopica. [...] delle fasi è sostituito da un'evoluzione unitaria in uno spaziodiHilbert. In particolare, non crediamo che il processo di misura quantistica sia una nuova sorgente di irreversibilità e pensiamo che con tali affermazioni si ponga in effetti il ...
Leggi Tutto
La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...] dello spaziodiHilbert associato al campo elettromagnetico 'quantizzato' come somma diretta dispazi, parametrizzati da un indice n intero, ciascuno descritto in termini di numero di occupazione di fotoni di frequenza (e quindi di energia ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] hermitiane positive, le forme diHilbert, le famiglie ortogonali, il procedimento di ortonormalizzazione, il prodotto tensoriale dispazidiHilbert. Si studiano classi di operatori negli spazidiHilbert nonché applicazioni parzialmente isometriche ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] teoria degli operatori su uno spaziodiHilbert e alle loro applicazioni alla fisica teorica dando inizio alla teoria delle algebre di operatori. Dopo il lavoro diHilbert e prima di quello di von Neumann sugli spazidiHilbert, Riesz presentò la sua ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...