spazio non commutativo
Luca Tomassini
L’oggetto di studio della geometria non-commutativa. Il fondamento concettuale della nozione dispazio non-commutativo è fornito dal teorema di Gelfand, che stabilisce [...] x2) per ogni f∈C0(X,ℂ) (naturalmente x1,x2∈X) allora x1=x2. Dunque l’algebra delle funzioni continue su uno spaziodiHausdorff X permette di distinguerne i punti e possiamo considerare X assegnato una volta nota l’algebra C0(X,ℂ). Per analogia, le C ...
Leggi Tutto
Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] dei matematici specializzati in altri settori. Infatti, facciamo notare, a titolo di esempio, un legame tra moduli proiettivi e topologia (Swan, 1962): se X è uno spaziodiHausdorff compatto, vi è una corrispondenza naturale biunivoca fra i fibrati ...
Leggi Tutto
lagrangiano
lagrangiano [agg. Der. del cognome di G.L. Lagrange] [MCC] Qualifica delle grandezze descrittive della dinamica di un sistema materiale continuo quando sono riferite non al generico punto [...] del sistema, contrapposto al punto di vista euleriano, che le riferisce invece al generico punto dello spazio occupato dal sistema medesimo. ◆ [ALG] Spazio l.: particolare spaziodiHausdorff, i cui elementi sono le funzioni di punto f(P) definite in ...
Leggi Tutto
(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] gli sviluppi più recenti della teoria delle soluzioni di viscosità va segnalato lo studio di e. - di tipo [1] e [7] - in dimensione infinita, e cioè nel caso in cui Ω sia un aperto in uno spaziodi Hilbert o di Banach (v. funzionale, analisi, App. IV ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] più fine del filtro degli intorni di x; si dice allora che F converge verso x.
Uno spazio topologico che soddisfi l'assioma di separazione diHausdorff è detto separato. Si definisce lo spazio regolare. Bourbaki può formulare definizioni equivalenti ...
Leggi Tutto
dimensione
dimensióne [Der. del lat. dimensio -onis "misura", dal part. pass. dimensus di dimetiri "misurare"] [MCQ] D. anomala: una d. operatoriale diversa da quella canonica di una data teoria. ◆ [MCC] [...] ≤n+1. Per signif. particolari (d. diHausdorff, ecc.) si rimanda al termine di qualificazione. ◆ [FML] D. frattale: l'estensione a insiemi limitati arbitrari della nozione di d. di una figura geometrica nello spazio euclideo; ha varie definizioni ...
Leggi Tutto
separabile
separàbile [agg. Der. del lat. separabilis, da separare, comp. di se- "a parte" e parare "approntare"] [CHF] Di sostanza che possa essere separata, mediante metodi chimici o fisici (→ separatore), [...] essere integrati separatamente. ◆ [ANM] Polinomio s.: un polinomio p(x) di grado n in un campo C con radici distinte in C o anche in un altro campo compreso in C. ◆ [ALG] Spazio topologico s.: lo stesso che spaziodi Haus-dorff: → Hausdorff, Felix. ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...