• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
65 risultati
Tutti i risultati [65]
Matematica [27]
Analisi matematica [17]
Temi generali [7]
Algebra [7]
Fisica [7]
Fisica matematica [6]
Diritto [4]
Meccanica [2]
Meccanica dei fluidi [2]
Elettrologia [2]

spazio normato

Enciclopedia della Matematica (2013)

spazio normato spazio normato spazio vettoriale V, reale o complesso, nel quale è definita una → norma || . ||: V → [0, +∞). Una norma su V induce una → metrica d(u, v) = ||u – v|| e, pertanto, definisce [...] completo, cioè tale che in esso ogni successione di Cauchy è convergente, è detto spazio di → Banach. Uno spazio normato in cui la norma soddisfa l’uguaglianza è detto prehilbertiano, oppure hilbertiano se esso è completo. Ponendo resta definito ... Leggi Tutto
TAGS: SUCCESSIONE DI CAUCHY – SPAZIO DI → BANACH – SPAZIO VETTORIALE – PRODOTTO SCALARE – PRODOTTO INTERNO
Mostra altri risultati Nascondi altri risultati su spazio normato (1)
Mostra Tutti

spazio di Banach

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Banach Arrigo Cellina Uno spazio normato X diventa metrico definendo la distanza tra due punti x e y, indicata con d(x,y), come d(x,y)=∥x−y∥. Se questo spazio metrico è ‘completo’, è cioè [...] tale che ogni successione di Cauchy converge, X viene detto spazio di Banach. I n umeri reali hanno questa proprietà di essere completi e gli spazi di Banach sono le naturali generalizzazioni dell’insieme dei numeri reali. → Convessità ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZIO NORMATO – SPAZIO METRICO – NUMERI REALI
Mostra altri risultati Nascondi altri risultati su spazio di Banach (1)
Mostra Tutti

norma, topologia della

Enciclopedia della Matematica (2013)

norma, topologia della norma, topologia della → spazio normato. ... Leggi Tutto
TAGS: SPAZIO NORMATO
Mostra altri risultati Nascondi altri risultati su norma, topologia della (6)
Mostra Tutti

spazio topologico duale

Enciclopedia della Matematica (2013)

spazio topologico duale spazio topologico duale di uno spazio topologico X*, è lo spazio vettoriale completo X′ (talvolta denotato con X*) costituito dai funzionali lineari e continui su X*. Il valore [...] con il crochet <x′, x> oltre che con x′ (x). Se X* è uno spazio normato, X′ è uno spazio di Banach con la norma La topologia indotta da questa norma si chiama topologia forte di X′. La topologia debole di X′ invece è la topologia meno fine in ... Leggi Tutto
TAGS: DISUGUAGLIANZA DI → HÖLDER – SPAZI DI → HILBERT – FUNZIONALI LINEARI – SPAZIO VETTORIALE – MISURE DI → RADON

spazio completo

Enciclopedia della Matematica (2013)

spazio completo spazio completo spazio metrico X in cui ogni successione di → Cauchy risulta convergente a un elemento appartenente a X. L’insieme R dei numeri reali è uno spazio metrico completo, mentre [...] l’insieme Q dei numeri razionali è uno spazio metrico non completo (→ completezza). Uno spazio normato e completo nella metrica indotta dalla norma è uno spazio di → Hilbert. ... Leggi Tutto
TAGS: SUCCESSIONE DI → CAUCHY – SPAZIO METRICO COMPLETO – SPAZIO DI → HILBERT – NUMERI RAZIONALI – SPAZIO NORMATO

semigruppo

Enciclopedia on line

semigruppo In matematica, insieme in cui è definita un’operazione (o legge di composizione interna) binaria associativa per la quale valgano le due regole di semplificazione a sinistra e a destra, tale [...] , cioè alla ricerca delle soluzioni dell’equazione (d/dt)u(t)=Au(t), con dato iniziale u(0)=u0, in cui u è un elemento di uno spazio normato X e A è un operatore lineare su DA⊂X, si può definire analogamente un s. Ut che, se A è limitato e DA=X, è la ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – CONVERGONO UNIFORMEMENTE – EQUAZIONI DIFFERENZIALI – MECCANICA QUANTISTICA – OPERAZIONE BINARIA
Mostra altri risultati Nascondi altri risultati su semigruppo (2)
Mostra Tutti

approssimazione

Enciclopedia on line

In matematica, si chiamano metodi, o procedimenti di a. o, semplicemente, a., procedure alle quali si ricorre per rappresentare enti matematici (numeri, misure, funzioni ecc.) in modo non esatto, ma sufficientemente [...] da x, esista. Risultati particolarmente importanti, anche per le applicazioni, si ottengono quando E è uno spazio vettoriale normato (➔ spazio): in tal caso si parla del problema della migliore a. lineare. Formule approssimate Funzioni reali e ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – TEMI GENERALI
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – SPAZIO VETTORIALE NORMATO – SERIE DI TAYLOR – UNITÀ DI MISURA – FUNZIONI SPLINE
Mostra altri risultati Nascondi altri risultati su approssimazione (4)
Mostra Tutti

FUNZIONALE, ANALISI

Enciclopedia Italiana - IV Appendice (1978)

FUNZIONALE, ANALISI (v. funzionali, XVI, p. 180) Tullio Viola Portano questo nome gli sviluppi più moderni dell'analisi matematica, generati dalla fecondazione che le teorie classiche hanno ricevuto [...] nei due casi; se il contrario si presenta, l'aggettivo verrà specificato). Si dimostra immediatamente che II) Spazio vettoriale normato. - Un0 spazio vettoriale S è così chiamato, se in esso è definita una funzione reale che indicheremo col simbolo ... Leggi Tutto
TAGS: SPAZIO VETTORIALE NORMATO – EQUAZIONE DIFFERENZIALE – TRASFORMAZIONE LINEARE – GEOMETRIA ANALITICA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su FUNZIONALE, ANALISI (2)
Mostra Tutti

Hilbert, spazio di

Enciclopedia della Matematica (2017)

Hilbert, spazio di Hilbert, spazio di in algebra lineare, particolare spazio di Banach, in cui la norma è indotta da un prodotto scalare. Dato uno spazio vettoriale X, che per generalità si suppone sul [...] che l’espressione gode delle proprietà di una norma; pertanto ogni spazio prehilbertiano, cioè dotato di prodotto scalare, è anche uno spazio normato, ponendo come norma Una proprietà che caratterizza le norme indotte da un prodotto scalare è il ... Leggi Tutto
TAGS: TEOREMA DI → LAX-MILGRAM – SPAZIO PREHILBERTIANO – FORMA SESQUILINEARE – SERIE DI → FOURIER – GEOMETRIA EUCLIDEA
Mostra altri risultati Nascondi altri risultati su Hilbert, spazio di (1)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] le funzioni continue su L compatto a valori su K con norma ∥f∥ = sup {∣ (f (t)∣ : t ∈ L)} - è uno spazio normato; e se (X, Σ, μ) è uno spazio di misura, lo spazio lineare di tutte le (ovvero, classi di equivalenza di) funzioni X → K p-integrabili ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON
1 2 3 4 5 6 7
Vocabolario
normato
normato agg. [part. pass. di normare]. – Di ente conforme a una norma, a una regola. In matematica, spazio n., spazio vettoriale provvisto di una norma (v. norma, n. 6).
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali