La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] i metodi topologici, in cui si cerca di generalizzare proprietà geometriche delle funzioni definite su uno spazioeuclideo a funzionali definiti su spazi di Banach.
Sviluppi sulle congetture di Goldbach e dei primi gemelli. La congettura di Goldbach ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] , dimostra che ogni varietà riemanniana di dimensione n può essere immersa in modo isometrico in uno spazioeuclideo di dimensione sufficientemente alta. Questo risultato, di grande importanza poiché unifica due branche della geometria differenziale ...
Leggi Tutto
geometria
geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] e studiare una metrica in una varietà qualsiasi, anche a più dimensioni e anche non immersa in uno spazioeuclideo. Gli sviluppi più elevati dell'impostazione della g. differenziale secondo Riemann hanno in seguito dato origine ad algoritmi ...
Leggi Tutto
Lorentz Hendrik Antoon
Lorentz 〈lòorents〉 Hendrik Antoon [STF] (Arnem 1853 - Haarlem 1928) Prof. di fisica matematica nell'univ. di Leida (1878); socio straniero dei Lincei (1902); ebbe il premio Nobel [...] v. elettrodinamica classica: II 284 b. ◆ [ALG] Gruppo di L.: il gruppo di tutte le trasformazioni di L. nello spazioeuclideo a quattro dimensioni su cui è definita l'operazione di composizione. ◆ [MCQ] Gruppo disomogeneo di L.: v. gruppo di Poincaré ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] Sottospazio di H.: data una base B di uno spazio di H., è lo spazio vettoriale generato da un sottoinsieme B'ÌB di elementi della base. ◆ Spazio di H.: estensione dello spazioeuclideo, e precis. uno spazio di Banach nel quale la norma di un elemento ...
Leggi Tutto
Bessel Friedrich Wilhelm
Bessel 〈bèsël〉 Friedrich Wilhelm [STF] (Minden 1784 - Königsberg 1846) Prof. di astronomia (1810) nell'univ. di Königsberg e fondatore del locale Osservatorio astronomico. ◆ [...] , allo scopo di determinare una lunghezza esatta indipendentemente dalla diversa dilatazione termica. ◆ [ALG] Disuguaglianza di B.: in uno spazioeuclideo n-dimensionale, se v è un vettore e u₁,...,ur formano un insieme di r versori ortogonali, è la ...
Leggi Tutto
sfera
sfèra [Der. del lat. sphaera, dal gr. sphaíra "palla da gioco"] [ALG] (a) Il solido luogo dei punti dello spazioeuclideo tridimensionale aventi distanza non maggiore di una lunghezza r data (raggio) [...] (4/3)πr3. (b) La superficie che limita il solido anzidetto (propr., superficie sferica), definibile come la superficie luogo dei punti dello spazio aventi distanza r assegnata (raggio) da un punto dato (centro); la sua area vale 4πr2. ◆ [ALG] S. a n ...
Leggi Tutto
Brouwer Luitzen Egbertus Jan
Brouwer 〈bràuër〉 Luitzen Egbertus Jan [STF] (Overschie, Olanda, 1881 - m. 1966) Prof. di matematica nell'univ. di Amsterdam (1951). ◆ [ALG] Grado topologico di B.: v. analisi [...] non lineare: I 143 a. ◆ [ALG] Teorema di punto fisso di B.: se f è un'applicazione continua di un insieme I (sottinsieme di uno spazioeuclideo) in sé stesso, esiste un punto P∈I "fisso" per f, cioè tale che f(P)=P. Il teorema di B. è suscettibile di ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] Questo termine vago portava con sé riferimenti che potevano richiamare di volta in volta gli spazieuclidei a più dimensioni, gli spazi proiettivi, le varietà riemanniane o, infine, aspetti geometrici della meccanica o della termodinamica. Così, fino ...
Leggi Tutto
riemanniano
riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] , mentre in generale danno una misura di quanto la varietà r. e la relativa geometria si discostino dall'ordinario spazioeuclideo e relativa geometria. ◆ [MCC] Meccanica r.: v. meccanica analitica: III 658 a. ◆ [ALG] Metrica r.: su una varietà ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....