• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
5 risultati
Tutti i risultati [47]
Fisica [5]
Matematica [23]
Analisi matematica [10]
Storia della matematica [7]
Statistica e calcolo delle probabilita [3]
Geometria [3]
Fisica matematica [3]
Storia della fisica [2]
Algebra [2]
Medicina [2]

spazio

Enciclopedia on line

spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] vettoriali, in cui la fibra è uno spazio vettoriale Vn a n dimensioni, come i fibrati tangenti e cotangenti a una varietà differenziabile. S. di Fréchet. È uno s. metrico i cui elementi sono le successioni di numeri (reali o complessi) (x1, x2 ... Leggi Tutto
CATEGORIA: CORPI CELESTI – COSMOLOGIA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOGRAFIA FISICA – GEOMETRIA – DISCIPLINE – DIRITTO COMUNITARIO E DIRITTO INTERNAZIONALE – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – POLITOLOGIA – TRASPORTI AEREI
TAGS: COMPLEMENTARE DI UN INSIEME – POSTULATO DELLE PARALLELE – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

Frechet Maurice-Rene

Dizionario delle Scienze Fisiche (1996)

Frechet Maurice-Rene Fréchet 〈freshé〉 Maurice-René [STF] (Maligny 1878 - Parigi 1973) Prof. di matematica in varie univ. e infine (1929) all'École normale supérieure di Parigi. ◆ [PRB] Classe di F.: [...] spesso denotata con f'(x), è unica, se esiste. ◆ [ANM] Differenziabilità secondo F. e differenziale secondo F.: v. sopra: Derivata di Fréchet. ◆ [ANM] Spazio di F.: uno spazio localmente metrizzabile e completo: v. funzionale, analisi: II 770 f. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] importante strumento dell'analisi non lineare che tratta il problema dell'invertibilità di mappe in spazi di Fréchet. Chirurgie. J.W. Milnor introduce l'operazione di chirurgia, basata sulla costruzione della somma connessa tra varietà della stessa ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Meccanica e termomeccanica razionali

Enciclopedia del Novecento (1979)

Meccanica e termomeccanica razionali CClifford A. Truesdell di Clifford A. Truesdell SOMMARIO: 1. Concetti e metodi: a) la natura delle scienze razionali; b) la nascita, l'apogeo e il lento declino [...] Gx sia continua e differenziabile n volte nel senso di Fréchet sulle storie che corrispondono a uno stato di quiete. La topologia qui presupposta è quella determinata dalla norma ∥ ∥ nello spazio di Banach, che è una norma speciale, scelta in modo ... Leggi Tutto
TAGS: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA – EQUAZIONI ALLE DERIVATE PARZIALI – PRINCIPIO DI AZIONE E REAZIONE – PRINCIPIO DI AZIONE E REAZIONE – PRINCIPIO DI SOVRAPPOSIZIONE

punti stazionari

Enciclopedia della Scienza e della Tecnica (2008)

punti stazionari Daniele Cassani Si consideri un funzionale, ovvero un’applicazione I:E→ℝ, definita su uno spazio normato E. Si ha che I è (Fréchet-) differenziabile in u∈E se esiste un’applicazione [...] lineare L:E→ℝ tale che e scriviamo L=I′(u), per denotare il differenziale (di Fréchet) del funzionale I nel punto u∈E (si osservi che il differenziale di un applicazione lineare è l’applicazione stessa). Se la condizione precedente vale per ogni u∈ ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: APPLICAZIONE LINEARE – DIFFERENZIABILE – SPAZIO NORMATO
Mostra altri risultati Nascondi altri risultati su punti stazionari (1)
Mostra Tutti
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali