• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
89 risultati
Tutti i risultati [166]
Matematica [89]
Fisica [37]
Algebra [33]
Analisi matematica [27]
Fisica matematica [27]
Geometria [20]
Temi generali [15]
Storia della matematica [14]
Biologia [11]
Ingegneria [8]

Riesz, Frigyes

Enciclopedia on line

Matematico (Gyo̯r 1880 - Budapest 1956), prof. nelle univ. di Cluj Napoca (1912), Seghedino (1920) e Budapest (1946), membro dell'Accademia delle scienze ungherese (1916), fondatore della rivista Acta [...] scientiarum mathematicarum (1922). Fu uno dei fondatori della teoria degli spazî vettoriali topologici; compì anche profonde ricerche sulle funzioni di variabile complessa e sull'analisi funzionale. Tra le opere: Les systèmes d'équations linéaires à ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SPAZÎ VETTORIALI TOPOLOGICI – ANALISI FUNZIONALE – SPAZÎ VETTORIALI – CLUJ NAPOCA – SEGHEDINO

Banach, Stefan

Enciclopedia on line

Banach, Stefan Matematico polacco (Cracovia 1892 - Leopoli 1945). Dal 1924 al 1945 prof. all'univ. di Leopoli. Il B. partecipò alla resistenza contro l'occupazione tedesca e fu vittima delle persecuzioni naziste. È uno [...] lui prende il nome una delle principali classi di spazî astratti lineari, gli spazi di B.: spazî vettoriali normati, cioè dotati di una norma, e completi, tra essi rientrano in particolare gli spazi di Hilbert. Opere: Théorie des opérations linéaires ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ANALISI FUNZIONALE – SPAZI DI HILBERT – SPAZÎ VETTORIALI – CRACOVIA – LEOPOLI
Mostra altri risultati Nascondi altri risultati su Banach, Stefan (2)
Mostra Tutti

spazio

Enciclopedia on line

spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] Particolare importanza in geometria differenziale hanno alcune classi speciali di fibrati: tra questi i fibrati vettoriali, in cui la fibra è uno spazio vettoriale Vn a n dimensioni, come i fibrati tangenti e cotangenti a una varietà differenziabile ... Leggi Tutto
CATEGORIA: CORPI CELESTI – COSMOLOGIA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOGRAFIA FISICA – GEOMETRIA – DISCIPLINE – DIRITTO COMUNITARIO E DIRITTO INTERNAZIONALE – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – POLITOLOGIA – TRASPORTI AEREI
TAGS: COMPLEMENTARE DI UN INSIEME – POSTULATO DELLE PARALLELE – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

TOPOLOGIA

Enciclopedia Italiana - IV Appendice (1981)

TOPOLOGIA (v. analysis situs, I, p. 87; topologia astratta, App. II, 11, p. 1004; topologia, App. III, 11, p. 960) Santuzza Baldassarri Ghezzo La t. oggi è una delle discipline fondamentali della matematica; [...] luogo a una teoria che ha avuto negli ultimi anni un enorme sviluppo, specialmente nel caso in cui le fibre sono spazi vettoriali (con la creazione, fra l'altro, seguendo A. Grothendieck, M. F. Atiyah ed F. Hirzebruch, intorno al 1960, della K-teoria ... Leggi Tutto
TAGS: RELAZIONE DI EQUIVALENZA – TEORIA DELLE CATEGORIE – VARIETÀ TOPOLOGICHE – RICOPRIMENTO APERTO – RELAZIONE D'ORDINE
Mostra altri risultati Nascondi altri risultati su TOPOLOGIA (6)
Mostra Tutti

ALGEBRA

Enciclopedia Italiana - IV Appendice (1978)

Premessa. - Gli sviluppi dell'a. nel quindicennio 1960-75 sono stati assai notevoli, sia dal punto di vista quantitativo sia da quello qualitativo. Prima di esaminare alcuni progressi in direzioni particolari, [...] alla classica teoria delle a.-gruppo. (Gli elementi di un gruppo G costituiscono la base di un'a., AG, che è uno spazio vettoriale a coefficienti su di un campo K; in essa la moltiplicazione viene derivata da quella di G). Mentre il caso di G finito ... Leggi Tutto
TAGS: ACCADEMIA NAZIONALE DEI LINCEI – SISTEMI ALGEBRICI GENERALI – TEORIA DEL PRIMO ORDINE – ESTENSIONE TRASCENDENTE – TEORIA DELLE CATEGORIE
Mostra altri risultati Nascondi altri risultati su ALGEBRA (2)
Mostra Tutti

SERIE

Enciclopedia Italiana - IV Appendice (1981)

SERIE (XXXI, p. 435; App. III, 11, p. 699) Tullio Viola 1. Serie numeriche. - Sia una serie a termini reali e positivi, le cui successive somme parziali indichiamo con Ai criteri di convergenza e divergenza [...] , e ciò già a cura dei fondatori dell'Analisi Funzionale (v. funzionale, analisi, in partic. § III, in questa App.). Siano X ed Y due spazi vettoriali normati (loc. cit. § II) ed F = F(x) una funzione definita in un insieme aperto O ⊆ X, a valori F(x ... Leggi Tutto
TAGS: CALCOLO DELLE VARIAZIONI – CALCOLO DIFFERENZIALE – CALCOLO DIFFERENZIALE – ANALISI FUNZIONALE – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su SERIE (6)
Mostra Tutti

CATEGORIE, Teoria delle

Enciclopedia Italiana - IV Appendice (1978)

Introduzione. - La teoria delle c. è di recente costruzione, ma, per la sua stessa natura, è oggi già penetrata diffusamente nella matematica. Essa rappresenta, nel pensiero matematico, un momento di sintesi, [...] W nell'insieme U(W) di tutti i suoi vettori (U è un funtore forgetful), e V: S → VettK, che manda ogni insieme X nello spazio vettoriale V(X) con base X. Com'è noto, per ogni coppia X e W, ogni funzione g: X → U(W) si estende a una mappa lineare ... Leggi Tutto
TAGS: INSIEME DEI NUMERI NATURALI – ASSIOMI DI ZERMELO-FRAENKEL – TEORIA DELLE CATEGORIE – TEORIA DEGLI INSIEMI – RELAZIONE D'ORDINE
Mostra altri risultati Nascondi altri risultati su CATEGORIE, Teoria delle (1)
Mostra Tutti

VARIETÀ

Enciclopedia Italiana - III Appendice (1961)

VARIETÀ (App. II, 11, p. 1089) Edoardo Vesentini In geometria il termine v. è comunemente inteso in due differenti accezioni: v. algebrica (per la quale rinviamo alla voce geometria: Geometria algebrica, [...] di &scr;T???(X) in &scr;F(X) sia lineare. Nell'insieme Ap delle p-forme su X si introduce una struttura di spazio vettoriale reale, assumendo come zero la p-forma nulla in ogni punto di X, ed associando ad ogni coppia ω1 e ω2 di p-forme su X ... Leggi Tutto
TAGS: DETERMINANTE JACOBIANO – METRICA RIEMANNIANA – FORMA DIFFERENZIALE – SPAZIO VETTORIALE – SPAZIO PROIETTIVO
Mostra altri risultati Nascondi altri risultati su VARIETÀ (6)
Mostra Tutti

FUNZIONALE, ANALISI

Enciclopedia Italiana - IV Appendice (1978)

FUNZIONALE, ANALISI (v. funzionali, XVI, p. 180) Tullio Viola Portano questo nome gli sviluppi più moderni dell'analisi matematica, generati dalla fecondazione che le teorie classiche hanno ricevuto [...] reali x = x(t) misurabili (secondo Lebesgue) e di potenza p-esima sommabile (secondo Lebesgue) su [0, 1], è uno spazio vettoriale (si tratta di "classi" di funzioni, in quanto s'identificano due funzioni che differiscono su un insieme di misura nulla ... Leggi Tutto
TAGS: SPAZIO VETTORIALE NORMATO – EQUAZIONE DIFFERENZIALE – TRASFORMAZIONE LINEARE – GEOMETRIA ANALITICA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su FUNZIONALE, ANALISI (2)
Mostra Tutti

nullità

Enciclopedia on line

Diritto Diritto civile Situazione di invalidità del negozio giuridico, determinata da un vizio che rende il negozio stesso inidoneo a produrre i suoi effetti e quindi inefficace (art. 1418-24 c.c.). I [...] . Precisamente, se A si pensa come matrice di una trasformazione lineare T tra uno spazio vettoriale V e uno spazio vettoriale W, l’uno e l’altro di dimensione n, la n. di A rappresenta la dimensione del sottospazio di V ai vettori del quale ... Leggi Tutto
CATEGORIA: ALGEBRA – DIRITTO CIVILE – DIRITTO PRIVATO – DIRITTO PROCESSUALE
TAGS: INFORMAZIONE DI GARANZIA – TRASFORMAZIONE LINEARE – PUBBLICO MINISTERO – SPAZIO VETTORIALE – NEGOZIO GIURIDICO
Mostra altri risultati Nascondi altri risultati su nullità (2)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 9
Vocabolario
vettoriale
vettoriale agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali