• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
33 risultati
Tutti i risultati [166]
Algebra [33]
Matematica [89]
Fisica [37]
Analisi matematica [27]
Fisica matematica [27]
Geometria [20]
Temi generali [15]
Storia della matematica [14]
Biologia [11]
Ingegneria [8]

autovalore

Enciclopedia della Scienza e della Tecnica (2008)

autovalore Luca Tomassini Tanto in algebra quanto in analisi, si è frequentemente condotti a definire e a calcolare delle funzioni (inverso, potenze, esponenziali ecc.) di un endomorfismo A:V→V di uno [...] ed è il raggio del più piccolo cerchio con centro nell’origine del piano complesso contenente sp(A). Persino quando lo spazio vettoriale V è di dimensione finita, può accadere che esso non sia decomponibile come somma diretta di rette stabili per un ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: ANALISI FUNZIONALE – SPAZIO VETTORIALE – RAGGIO SPETTRALE – DIAGONALIZZABILE – PIANO COMPLESSO
Mostra altri risultati Nascondi altri risultati su autovalore (4)
Mostra Tutti

scalare

Dizionario delle Scienze Fisiche (1996)

scalare scalare [agg. e s.m. Der. del lat. scalaris, nel signif. figurato "che varia secondo una scala graduata", da scala "scala"] [ALG] In contrapp. a vettoriale e tensoriale, di grandezza che è univocamente [...] dei moduli) per due vettori equiparalleli e nullo per due vettori ortogonali fra loro. La nozione di prodotto s. si generalizza a spazi vettoriali reali qualsiasi V; dati tre vettori v₁, v₂, v₃ ∈V, è lo s. reale (v₁, v₂) che ha le seguenti proprietà ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA NUCLEARE – RELATIVITA E GRAVITAZIONE – ALGEBRA

tensoriale

Dizionario delle Scienze Fisiche (1996)

tensoriale tensoriale [agg. Der. di tensore "che è relativo a un tensore, che ha carattere di tensore"] [ALG] Calcolo t.: l'insieme delle regole per utilizzare i tensori nelle applicazioni geometriche [...] del campo elettromagnetico), il tensore energia-impulso nella relatività ristretta, ecc. ◆ [ALG] Prodotto t. tra due spazi vettoriali: dati due spazi vettoriali qualunque Vn, Vm, di dimensioni rispettive n, m, entrambi su K, il loro prodotto t., che ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – TEMI GENERALI – ALGEBRA

teoria delle rappresentazioni

Enciclopedia della Scienza e della Tecnica (2008)

teoria delle rappresentazioni Luca Tomassini Teoria che studia omomorfismi di semigruppi (e in particolare gruppi), algebre o altre strutture algebriche nel corrispondente insieme degli endomorfismi [...] astratte a partire da modelli concreti (fondamentale a riguardo il caso dei gruppi e algebre di matrici su spazi vettoriali a dimensione finita), la teoria delle rappresentazioni mira a classificare tutte le possibili realizzazioni concrete di tali ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: TRASFORMAZIONI LINEARI – ANALISI FUNZIONALE – SPAZIO VETTORIALE – SOMMA DIRETTA – ENDOMORFISMI
Mostra altri risultati Nascondi altri risultati su teoria delle rappresentazioni (1)
Mostra Tutti

teoria dei semigruppi

Enciclopedia della Scienza e della Tecnica (2008)

teoria dei semigruppi Luca Tomassini Un semigruppo è un insieme con una operazione binaria * (comunemente detta moltiplicazione) che soddisfi la proprietà associativa: a*(b*c)=(a*b)*c. Un semigruppo [...] all’operazione di composizione. Di particolare importanza sono proprio i semigruppi di trasformazioni di spazi dotati di strutture topologiche, quali gli spazi vettoriali topologici o anche di Banach. In questo caso si parla di teoria dei semigruppi ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

somma

Dizionario delle Scienze Fisiche (1996)

somma sómma [Der. del lat. summa "il punto più alto", f. sostantivato dell'agg. summus "sommo"] [ALG] Il risultato dell'operazione di addizione di numeri naturali (s. aritmetica), di numeri con segno [...] 212 f. ◆ [ALG] S. diretta: (a) di rappresentazione: v. gruppi, rappresentazione dei: III 122 b; (b) di spazi vettoriali V₁,...,Vk: è lo spazio vettoriale V, denotato con il simbolo V₁ ⊕...⊕ Vk, tale che ogni vettore υ di V si possa esprimere nella ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su somma (2)
Mostra Tutti

somma diretta

Enciclopedia della Scienza e della Tecnica (2008)

somma diretta Luca Tomassini Sia {Aα,α∈I} una famiglia di insiemi indicizzata dall’insieme I e sia πΑ∈I Aα il prodotto diretto (o cartesiano) dei suoi elementi Aα. Un elemento di πΑ∈I Aα è allora un’applicazione [...] I un elemento xα di Aα. Se su tutti gli insiemi Aα è definita una medesima struttura algebrica quale quella di gruppo, spazio vettoriale, algebra o anello, il loro prodotto diretto la eredita in modo naturale. Se l’insieme degli indici I ha un numero ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE – ELEMENTO NEUTRO – ALGEBRA
Mostra altri risultati Nascondi altri risultati su somma diretta (1)
Mostra Tutti

nullita

Dizionario delle Scienze Fisiche (1996)

nullita nullità [Der. del lat. nullitas -atis, da nullus "nessuno"] [LSF] L'essere nullo; raro nel signif. di annullarsi. ◆ [ALG] N. di una trasformazione lineare: è la dimensionalità del nucleo (←) [...] ; precis., se A si pensa come matrice di una trasformazione lineare T tra uno spazio vettoriale V e uno spazio vettoriale W, l'uno e l'altro di dimensione n, la n. di A rappresenta la dimensione del sottospazio di V ai vettori del quale corrisponde ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA

diretto

Dizionario delle Scienze Fisiche (1996)

diretto dirètto [agg. Der. del part. pass. directus del lat. dirigere "costringere in una determinata direzione", comp. di dis- peggiorativo e regere "reggere"] [LSF] In contrapp. a indiretto, di ente [...] uso derivato dal-l'astronomia (v. sopra: Moto d.), lo stesso che senso antiorario. ◆ [ALG] Somma d.: degli spazi vettoriali V₁, ...,Vn, è lo spazio vettoriale V, denotato con il simbolo V₁⊕V₂⊕...⊕Vn, tale che ogni vettore v∈V si possa esprimere nella ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – OTTICA – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA

additivo

Dizionario delle Scienze Fisiche (1996)

additivo additivo [agg. e s.m. Der. del lat. additivus, dal part. pass. additus di addere "aggiungere" e quindi "che s'aggiunge", "che ha relazione con l'operazione di addizione"] [ALG] Applicazione [...] soddisfa la condizione f(x+y)=f(x)+f(y) identicamente rispetto a x e y; (b) generalizzando, funzione tra due spazi vettoriali tale che l'immagine della somma di due vettori è la somma delle loro immagini. ◆ [ALG] Proprietà a. di insiemi: proprietà ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – OTTICA – ALGEBRA
1 2 3 4
Vocabolario
vettoriale
vettoriale agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali