• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
18 risultati
Tutti i risultati [97]
Analisi matematica [18]
Matematica [56]
Algebra [15]
Fisica [12]
Fisica matematica [11]
Storia della matematica [10]
Biografie [8]
Temi generali [6]
Biologia [5]
Geometria [4]

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] pubblicato il libro di Banach, erano gli spazi di funzioni e gli spazi astratti con una struttura algebrica di spazio vettoriale lineare, ma di dimensione infinita e dotati di una struttura topologica basata sul concetto di spazio metrico nel quale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

varieta

Dizionario delle Scienze Fisiche (1996)

varieta varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] cui l'ipotesi che i domini delle carte locali siano aperti di Rn è sostituita da quella che detti domini siano aperti di un dato spazio di Hilbert o di Banach: v. varietà differenziabili infinito-dimensionali. ◆ [ALG] V. differenziale: lo stesso che ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su varieta (6)
Mostra Tutti

operatori compatti

Enciclopedia della Scienza e della Tecnica (2008)

operatori compatti Luca Tomassini Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] degli operatori. Notiamo che tali definizioni hanno senso anche nel caso di operatori su uno spazio di Banach (normato e completo) E. Ogni operatore compatto hermitiano su uno spazio di Hilbert ℋ è diagonalizzabile, nel senso che esistono dei numeri ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE COMPATTO – OPERATORE IDENTITÀ – ANALISI MATEMATICA – SPAZIO DI HILBERT – OPERATORE LINEARE

norma

Enciclopedia della Scienza e della Tecnica (2008)

norma Luca Tomassini Sia X uno spazio vettoriale. Un’applicazione ∣∣∙∣∣:X→ℝ si dice una norma se verifica i seguenti assiomi: (a) ∣∣x∣∣≥0, per ogni x∈X; ∣∣x∣∣=0 se e soltanto se x=0; (b) ∣∣λx∣∣=∣λ∣·∣∣x∣∣, [...] dice spazio di Banach. Non è affatto necessario che lo spazio normato (X,∣∣∙∣∣) sia uno spazio vettoriale a dimensione finita. Al contrario, la nozione astratta di norma fu introdotta da Stefan Banach proprio al fine di studiare le proprietà di spazi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su norma (6)
Mostra Tutti

generatore di un semigruppo

Enciclopedia della Scienza e della Tecnica (2008)

generatore di un semigruppo Luca Tomassini Siano X uno spazio di Banach con norma ∣∣∙∣∣ e B(X) l’insieme degli operatori continui su di esso. Si dice semigruppo di operatori {T(t)∣t≥0} una famiglia [...] [2] è soddisfatta se vale la condizione di Hille-Yosida: ∣∣R(λ,A)∣∣≤M(λ−ω)−1. Il teorema di Hille-Yosida può essere generalizzato da un lato al caso di spazi vettoriali topologici e dall’altro a quello di operatori non lineari. → Equazioni funzionali ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZI VETTORIALI TOPOLOGICI – OPERATORI CONTINUI – OPERATORE LINEARE – SPAZIO DI BANACH – SPAZI VETTORIALI

autoaggiunto

Dizionario delle Scienze Fisiche (1996)

autoaggiunto autoaggiunto [agg. Comp. di auto- e aggiunto] [ANM] Di operatore lineare che è identico al suo operatore aggiunto (anche come s.m.); il termine è sinon. di hermitiano (←) per operatori definiti [...] è se lo spazio è infinito-dimensionale; precis., dato uno spazio di Hilbert H, l'a. è un operatore lineare A per cui è (a, Ab)=(Aa, b) con a∈H, b∈H. ◆ [ALG] Elemento a., o hermitiano, di un'algebra di Banach involutiva: v. algebre di operatori: I 93 ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO DI HILBERT – OPERATORE LINEARE
Mostra altri risultati Nascondi altri risultati su autoaggiunto (2)
Mostra Tutti

spazio vettoriale topologico

Enciclopedia della Scienza e della Tecnica (2008)

spazio vettoriale topologico Luca Tomassini Lo sviluppo di settori dell’analisi funzionale, quali per esempio la teoria delle distribuzioni, ha mostrato che in molti casi è utile considerare spazi lineari [...] localmente convessi. Si tratta di spazi vettoriali topologici in cui ogni insieme aperto non vuoto contiene un aperto non vuoto convesso. Questi spazi sono particolarmente importanti in quanto per essi vale il teorema di Hahn-Banach, che garantisce l ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEORIA DELLE DISTRIBUZIONI – SISTEMA DI INTORNI – ANALISI FUNZIONALE – NUMERI COMPLESSI – SPAZI VETTORIALI
Mostra altri risultati Nascondi altri risultati su spazio vettoriale topologico (1)
Mostra Tutti

spazio duale

Enciclopedia della Scienza e della Tecnica (2008)

spazio duale Luca Tomassini Dato uno spazio vettoriale reale (o complesso) X si definisce il suo duale Y come lo spazio vettoriale reale (o complesso) costituito dai funzionali lineari su X, ovvero [...] in X* segue dalla definizione stessa di funzionale lineare, il viceversa è invece una conseguenza di uno dei risultati fondamentali della teoria degli spazi vettoriali topologici, il teorema di Hahn-Banach. Quest’ultimo nella sua forma più generale ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE TOPOLOGICO – EQUAZIONI FUNZIONALI – SPAZIO VETTORIALE
Mostra altri risultati Nascondi altri risultati su spazio duale (1)
Mostra Tutti
1 2
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali